Supporting Information

De Novo Design of Potential Peptide Analogs against Main Protease of Omicron Variant using *in silico* Studies

Stanly Paul M.L.^c, Sonia Kumari^d, Tamás A. Martinek*ab and Elizabeth Sobhia M *d

^a.Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary

^bELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary. Email: martinek.tamas@med.u-szeged.hu

^c.Institute of Pharmaceutical Analysis, University of Szeged, Eotvos u. 6, G-6720 Szeged, Hungary. Email: stanley.szte@gmail.com

^d Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India. Email: mesophia@niper.ac.in

Table of Contents	Page number
Figure S1	3
Figure S2	4
Figure S3	5
Figure S4	6
Figure S5	7
Figure S6	7
Table S1	
Table S2	
Table S3	10
Table S4	11
Table S5	

Figure S1. (A) RMSD of Mpro^(SARS-CoV2) while binding with control peptide (cyan), peptide-(I)(salmon) and peptide-(II) (olive) in MD simulations (B) RMSD of Mpro^(Omicron) while binding with control peptide (cyan), peptide-(I) (salmon) and peptide-(II) (olive) in MD simulations (C) RMSF of Mpro^(SARS-CoV2) while binding with control peptide (cyan), peptide-(I) (salmon) and peptide-(II) (olive) in MD simulations (D) RMSF of Mpro^(Omicron) while binding with control peptide (cyan), peptide-(I) (salmon) and peptide-(II) (olive) in MD simulations (D) RMSF of Mpro^(Omicron) while binding with control peptide (cyan), peptide-(I) (salmon) and peptide-(II) (olive) in MD simulations.

Figure S2. (A) Salt bridge distance between Mpro ^(SARS-CoV-2) Glu166 and Lys528 Peptide(I) (magenta), Peptide(II) (green) during 200ns MD simulations. (B) Salt bridge distance between Mpro ^(Omicron) Glu166 and Lys528 Peptide(I) (magenta), Peptide(II) (green) during 200ns MD simulations. (C) The radius of gyration of Mpro ^(SARS-CoV2) during the 200ns MD simulations while interacting with control peptide (cyan), Peptide(I) (salmon) and Peptide(II) (olive) (D) Radius of gyration of Mpro ^(Omicron) during the 200ns MD simulations while interacting with control peptide (cyan), Peptide(I) (salmon) and Peptide(I) (salmon

Figure S3. Histogram for hydrogen bond occupancy between pairs (peptide-protein)in SARS-CoV2(A,B) and Omicron (C, D); (A) Peptide/peptide mimics acting as hydrogen bond "Acceptor" and Mpro^(SARS-CoV2) as hydrogen bond "Donor"; (B) Peptide/peptide mimics acting as hydrogen bond "Donor" and Mpro^(SARS-CoV2) as hydrogen bond "Acceptor"; (C) Peptide/peptide mimics acting as hydrogen bond "Acceptor" as hydrogen bond "Donor"; (D) Peptide/peptide mimics acting as hydrogen bond "Acceptor" as hydrogen bond "Donor"; (D) Peptide/peptide mimics acting as hydrogen bond "Acceptor" as hydrogen bond "Donor"; (D) Peptide/peptide mimics acting as hydrogen bond "Acceptor".

Figure S4. X-axis denotes the canonical amino acids (except proline and glycine) and Y-axis denotes docking scores. The standard deviation of the (A)Mpro ^(SARS-CoV-2)-peptide/peptide-analogs, (B) Mpro ^(Omicron)-peptide/peptide-analogs, (C) Mpro ^(Beta)-peptide/peptide-analogs docking scores were obtained by using 8 replicates (20 canonical amino acids (except Proline and glycine) were mutated on 8 amino acid peptides. (E) Comparison of docking scores across variants (significant difference observed (P-value < 0.005).

Figure S5. Superimposition of reference peptide(green), peptide-1(cyan) and peptide-2(pink with calpeptin(yellow)

Figure S6. Contact information within 4Å in between $(Mpro^{(SARS-CoV-2)} with peptide substrate(A), Peptide-1(B) and Peptide-2(C).$ Native contacts between $Mpro^{(Omicron)}$ with peptide substrate(D), Peptide-1(E) and Peptide-2(F).

 Table S1. Initial docked pose interactions of substrate peptide(control) with Mpro^(SARS-CoV2, Omicron, Beta, Lambda) variants. "*" denotes hydrogen bonds.

Peptides	Interactions	Peptide residues	Control	Distance (Å)	Omicron	Distance (Å)	Beta	Distance (Å)	Lambda	Distance (Å)
		Peptide		<u> </u>	I	Mpro	o (Protein)	I	1	
		524:Ser	189:Gln 168:Pro 190:Thr	3.2 3.3 3.4	190:Thr 168:Pro 191:Ala	3.7 3.9 3.9	190:Thr 168:Pro 191:Ala	3.4 3.5 3.7	168:Pro 190:Thr	3.5 3.6
		525:Ala	190:Thr* 189:Gln 188:Arg	2.9 3.1 3.0	190:Thr* 166:Glu 188:Arg 189:Gln 167:Leu 192:Gln 168:Pro	2.9 3.3 3.3 3.4 3.8 3.9 4.0	190:Thr* 189:Gln 188:Arg 167:Leu 166:Glu 165:Met	3.0 3.5 3.6 3.6 3.7 4.0	190:Thr* 166:Glu 189:Gln 188:Arg 165:Met 167:Leu	2.9 3.3 3.4 3.5 3.9 3.9
		526:Val	166:Glu*	2.8	166:Glu* 165:Met	3.3 3.4	166:Glu* 165:Met 189:Gln	3.4 3.5 3.6	166:Glu* 165:Met	3.1 3.5
Reference Peptide		527:Leu	41:Hie 49:Met 165:Met	3.1 3.3 3.3	49:Met 164:His 41:Hie 165:Met	3.5 3.6 3.7 4.0	189:Gln* 49:Met 41:Hie 164:His	3.2 3.8 3.8 3.9	164:His 49:Met 41:Hie 165:Met	3.6 3.7 3.8 4.0
	Hydrogen Bonc	528:Gln	63:Hie* 143:Gly* 140:Phe* 145:Cys*	2.8 3.0 3.1 3.2	143:Gly* 163:Hie* 140:Phe* 166:Glu* 145:Cys* 144:Ser 141:Leu 142:Asn 164:His	2.9 3.0 3.0 3.1 3.2 3.3 3.6 3.6 3.7	143:Gly* 140:Phe* 163:Hie* 144:Ser 145:Cys* 166:Glu 141:Leu 142:Asn	3.0 3.0 3.0 3.2 3.3 3.4 3.6 3.7	166:Glu* 143:Gly* 140:Phe 142:Asn 144:Ser* 145:Cys 41:Leu	3.0 3.0 3.1 3.1 3.1 3.3 3.5
		529:Ser	142:Asn 25:Thr 143:Gly 145:Cys 41:Hie 26:Thr 27:Leu	3.0 3.5 3.7 3.8 3.8 3.9 4.0	41:Hie 143:Gly 142:Asn 27:Leu 145:Cys 25:Thr 26:Thr	3.4 3.5 3.6 3.9 3.9 4.0 4.0	41:Hie 143:Gly 49:Met 42:Asn	3.2 3.8 3.9 4.0	41:Hie 143:Gly 145:Cys 142:Asn 26:Thr	3.2 3.3 3.7 3.8 3.9
		530:Gly	26:Thr*	2.8	26:Thr* 143:Gly 25:Thr	2.9 3.3 3.6	26:Thr 143:Gly 25:Thr	2.9 3.3 3.6	26:Thr* 143:Gly 25:Thr	2.9 3.3 3.7
		531:Phe	24:Thr 26:Thr 142:Asn	3.0 3.3 3.8	24:Thr 26:Thr	3.3 4.0	46:Ser 24:Thr 25:Thr	3.3 3.5 3.6	24:Thr 46:Ser 49:Met	3.3 3.3 4.0
tide- 1)	pu ogen	525:His	-	-	190:Thr	2.9	188:Arg	3.0	190:Thr	2.8
Pept (1	Hydr Bo	526:Tyr	166:Glu	3.3	-	-	166:Glu	3.4		

		527:His					164:His	3.0		
		528:Lys	143:Gly 145:Cys	2.9 3.4	143:Gly 145:Cys	2.9 3.3	140:Phe 143:Gly 145:Cys 166:Glu	3.0 3.0 3.1 2.9	140:Phe 166:Glu	3.0 2.9
		529:His	-	-	-	-	-	-	143:Gly	3.1
		530:Tyr	26:Thr 25:Thr	2.8 3.6	26:Thr 25:Thr		26:Thr	2.9	-	-
	Pi-Pi	527:His	41:His	3.0	41:His	3.1	-	-	-	-
	Salt bridge	528:Lys	166:Glu	3.1	-	-	166:Glu	2.9	166:Glu	2.9
		525:Hie	190:Thr	2.9	190:Thr	2.9	190:Thr	2.8	188:Arg	2.9
	<u>×</u>	526:Tyr	166:Glu	3.0	166:Glu	3.4			166:Glu	3.4
ptide-(II)	ogen Bond	528:Lys	143:Gly 145:Cys	2.8 3.3	143:Gly 145:Cys	2.9 3.2	140:Phe 166:Glu	3.0 2.9	140:Phe 143:Gly 145:Cys	3.0 2.9 3.3
Pe	Hydr	529:His					143:Gly	3.1	46:Ser	3.1
		530:Tyr	26:Thr 25:Thr	2.7 3.5	26:Thr 25:Thr	2.7 3.5			26:Thr	3.0

Type	P adjacent							
Type	Wild type	Omicron	Beta	Lambda				
GLN-Control	0.9989987	1	0.9976458	1				
ASP-Control	1	1	1	1				
HIS-Control	0.9415269	0.9999999	1	0.7247772				
ARG-Control	0.9999976	1	0.9210504	0.9999999				
LYS-Control	1	0.9999927	0.9999881	1				
GLU-Control	0.9985704	1	0.9900602	1				
ASN-Control	0.9999999	1	0.9998998	0.9999998				
CYS-Control	1	1	1	0.9999525				
THR-Control	1	1	0.9999434	1				
SER-Control	1	1	1	1				
TRP-Control	0.4072177	0.9980674	1	0.9989491				
TYR-Control	0.2558095	0.9999998	0.9999884	0.9999882				
PHE-Control	0.1944254	0.9999844	0.9992989	0.9968224				
ILE-Control	1	1	0.999999	1				
MET-Control	0.9999997	0.9992334	1	0.999997				
LEU-Control	1	1	1	0.9999806				
VAL-Control	1	1	1	1				
ALA-Control	1	0.9999989	1	1				

Table S2. Tukey or Dunnett multiple comparison testing made in between the average docking scores of substrate peptide(control) and canonical amino acid mutant peptides.

Table S3. Tukey or Dunnett multiple comparison testing made in between the average docking scores of (SARS-CoV2/Wild Type (WT)) and SARS CoV2 variants (Omicron, Beta and Lambda).

	difference	lower	upper	p adjacent
Omicron-WT	-16.592434	-20.145196	-13.039672	0.0000000
Beta-WT	-8.390461	-11.943222	-4.837699	0.0000000
Lambda-WT	1.164474	-2.388288	4.717236	0.8331979

Variant	Virus name	Accession ID	Collecti on date	Submiss ion Date	Lengt h	Location	Originating lab
Alpha (B.1.1.7)	hCoV- 19/Japan/HiroY H02/2021	EPI ISL_ 6756515	8/2/21	11/26/21	29763	Asia/Japan/T okyo	The Virology lab, Hiroshima University
Beta (B.1.351)	hCoV- 19/Japan/TY27- 328-P0/2021	EPI ISL_ 5416540	/07/21	10/21/21	29764	Asia/Japan/T okyo	Department of Virology I, National Institute of Infectious Diseases
Gamma (P.1)	hCoV- 19/Japan/TY30- 974-P0/2021	EPI ISL_ 6228367	/08/21	11/12/21	29768	Asia/Japan/T okyo	Department of Virology I, National Institute of Infectious Diseases
Delta (B.1.617.2)	hCoV- 19/Japan/TKYS 01334/2021	EPI ISL_ 6832166	10/25/21	11/29/21	29769	Asia/Japan/T okyo	Tokyo Metropolitan Institute of Public Health
Omicron (BA.1)	hCoV- 19/Sweden/Omi cronCoV_Isolat e_1/2021	EPI ISL 10866182	//21	3/9/22	29,822	Europe/ Sweden	Swedish national genomic surveillance program of SARS-CoV-2
Omicron (BA.2)	hCoV- 19/ Cabo Verde/FG- AG0104/2022	EPI ISL 14721358	7/22/22	8/29/22	29,660	Africa/ Cabo Verde/ Fogo	Virology Laboratory of Fogo
Omicron (BA.2.12.1)	hCoV-19/ India/DL- GSL MAMC_L NH/2022	EPI ISL 12643348	4/30/22	5/11/22	29,862	Asia/India/D elhi	Department of Microbiology, MAMC & Genome Sequencing Lab, Lok Nayak Hospital
Omicron (BA.4)	hCoV- 19/Andorra/AN D- 255 221941418 801-GC/2022	EPI ISL 14551163	6/29/22	8/19/22	29,636	Europe / Andorra / Andorra	Laboratori d'anàlisis clíniques, Hospital Nostra Senyora de Meritxell
Omicron (BA.5)	hCoV- 19/Andorra/AN D- 259 221941419 101-GC/2022	EPI ISL 14551152	7/3/22	8/19/22	29,622	Europe / Andorra / Andorra	Laboratori d'anàlisis clíniques, Hospital Nostra Senyora de Meritxell
Theta (P.3)	hCoV- 19/Angola/CERI -KRISP- K012704/2021	EPI ISL_ 2492682	3/18/21	6/11/21	29,811	Africa / Angola / Luanda	Instituto Nacional de Investigação em Saúde
Zeta (P.2)	hCoV- 19/Argentina/C9 7133/2020	EPI ISL_ 778843	11/20/20	1/7/21	29,896	South America / Argentina	Servicio Virosis Respiratorias- Departamento Virología- INEI
Epsilon (B.1.427)	hCoV- 19/Anguilla/603	EPI ISL_ 2478962	3/19/21	6/10/21	29,782	North America /	The Caribbean Public Health Agency

Table S4. Mpro sequence data collection for SARS-CoV2 variants ____

_

Variant	Virus name	Accession ID	Collecti on date	Submiss ion Date	Lengt h	Location	Originating lab
	00/2021					Anguilla	
Eta (B.1.525)	hCoV- 19/Algeria/1788 5/2021	EPI ISL 12156746	3/1/21	4/20/22	29,311	Africa / Algeria / Algiers	NIC, Viral Respiratory Unit
Карра (В.1.617.1)	hCoV- 19/Angola/CERI -KRISP- K012705/2021	EPI ISL_ 2493071	3/21/21	6/11/21	29,842	Africa / Angola / Luanda	Instituto Nacional de Investigação em Saúde
Iota (B.1.526)	hCoV- 19/Afghanistan/ 2870x0198 234 87_23597/2021	EPI ISL_ 4572806	4/7/21	9/29/21	29,721	Asia / Afghanistan	Afghanistan
Mu (B.1.621)	hCoV- 19/Argentina/IN EI109824/2021	EPI ISL_ 7751221	7/9/21	12/17/21	29,902	South America / Argentina / CABA	Servicio Virosis Respiratorias- Departamento Virologia- INEI
Lambda (C.37)	hCoV- 19/Argentina/IN EI096534/2020	EPI ISL_ 2158693	11/8/20	5/19/21	29,792	South America / Argentina / Ciudad Autonoma de Buenos Aires	Servicio Virosis Respiratorias- Departamento Virología- INEI

Table S5. Binding free energy of peptide and peptide-analogs against Mpro (SARS-CoV-2 and Omicron)

Energy	Mpro ^(SARS-CoV2) - Control	Mpro ^(Omicron) - Control	Mpro ^{(SARS-} CoV2)_ Peptide(I)	Mpro ^(Omicron) - Peptide(I)	Mpro ^{(SARS-} ^{CoV2)_} Peptide(II)	Mpro ^(Omicron) - Peptide(II)
	-72.41	-76.00	-97.51	-100.40	-93.98	-92.06
ΔE _{Eel}	-59.77	-64.96	-224.66	-230.73	-197.40	-251.61
ΔE _{Egb}	94.43	99.14	262.25	268.68	233.13	284.88
ΔE _{Esurf}	-9.29	-9.92	-12.15	-12.33	-11.62	-11.76
ΔG _{Gas}	-132.19	-140.97	-322.17	-331.14	-291.39	-343.68
ΔG _{Solv}	85.13	89.21	250.09	256.34	221.50	273.12
ΔG _{Total}	-47.05	-51.75	-72.0	-74.79	-69.88	-70.56