Supporting Information

Geometries and Stabilities of Chromium doped Nitrogen Clusters: Mass Spectrometry and Density Functional Theory Studies

Zaifu Jiang,^{1‡} Peixin Fu,^{1, 2‡} Meicheng Chen,³ Chen Chen,³ Bole Chen,⁴

Wei Dai,¹ Kewei Ding^{5, 6, *} and Cheng Lu^{3, *}

¹ School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, China;

² Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China;

³ School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China;

⁴ School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

⁵ Xi'an Modern Chemistry Research Institute, Xi'an 710065, China;

⁶ State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an 710065, China.

*Corresponding Authors

E-mail: dkw204@163.com (K. W. Ding); E-mail: lucheng@calypso.cn (C. Lu).

[‡]These authors contributed equally to this work and should be considered as co-first

authors.

Table S1. The calculated total energies and lowest frequencies of all ground states and metastable isomers of optimized neutral CrN_n clusters (n = 2-11).

п	Ground state	Frequency	Isomer	Frequency	Isomer	Frequency
	(<i>n</i> a)/eV	(<i>n</i> a)/cm ⁻¹	(<i>n</i> b) /eV	(<i>n</i> b)/cm ⁻¹	(<i>n</i> c) /eV	(<i>n</i> c)/cm ⁻¹
2	-31398.685	64.98	-31397.569	395.23	-31392.378	281.16
3	-32886.998	105.72	-32886.499	56.37	-32885.993	116.62
4	-34378.884	52.60	-34378.248	57.74	-34376.223	89.34
5	-35867.758	40.70	-35867.173	36.76	-35866.713	73.04
6	-37359.281	22.62	-37359.027	59.13	-37358.945	40.56
7	-38847.673	27.32	-38847.646	15.62	-38847.605	46.75
8	-40339.788	17.99	-40339.639	28.08	-40339.513	20.59
9	-41828.048	10.81	-41828.045	12.22	-41827.961	35.28
10	-43320.045	10.42	-43320.023	24.09	-43317.161	23.54
11	-44809.452	25.48	-44809.433	12.73	-44801.661	36.98

Table S2. The calculated total energies and lowest frequencies of all ground states and metastable isomers of optimized cationic $\operatorname{CrN}_{n}^{+}$ clusters (n = 2-11).

n	Ground state	Frequency	Isomer	Frequency	Isomer	Frequency
	(<i>n</i> a')/eV	(<i>n</i> a')/cm ⁻¹	(<i>n</i> b') /eV	(<i>n</i> b')/cm ⁻¹	(<i>n</i> c') /eV	(<i>n</i> c')/cm ⁻¹
2	-31392.675	182.77	-31392.246	134.80	-31385.171	192.36
3	-32879.964	99.63	-32879.149	82.29	-32875.991	426.95
4	-34373.823	47.02	-34373.346	43.04	-34372.890	39.09
5	-35861.133	43.81	-35859.853	76.77	-35856.594	206.95
6	-37354.633	30.61	-37354.303	29.60	-37347.551	39.53
7	-38842.137	38.86	-38841.714	21.78	-38838.104	5.13
8	-40335.439	37.18	-40328.400	16.93	-40328.306	37.36
9	-41822.743	24.58	-41813.638	60.54	-41809.886	29.49
10	-43315.958	20.88	-43309.193	16.72	-43309.006	47.63
11	-44803.348	37.79	-44803.333	32.52	-44803.120	29.40

	Cr	N _n	CrN	\mathbf{V}_{n}^{+}
n	Alpha	Beta	Alpha	Beta
2	5.26	3.58	7.28	12.31
3	5.38	2.77	8.53	8.12
4	5.77	2.77	7.57	10.52
5	5.96	4.23	8.53	8.62
6	5.99	2.77	7.66	11.37
7	4.16	6.57	9.01	9.70
8	6.74	3.22	8.23	13.33
9	4.04	6.91	8.69	9.57
10	6.54	1.41	7.89	12.94
11	5.76	5.14	9.01	9.55

Table S3. The HOMO-LUMO gap values (HLGs) (in eV) of open-shell structure of the low-lying $\operatorname{CrN}_n^{0/+}$ cluster (n = 2-11) via the representations of α - (spin-up) and β -orbital (spin-down).

Figure S4. The molecular orbitals of the ground state structure of CrN_8 cluster. The blue and green lines indicate positions of the occupied α and β orbitals, while the red and pink lines indicate the unoccupied α and β orbitals, respectively.

Figure S5. AdNDP analysis of the ground state structure of CrN_8 cluster. ON indicates the number of occupied electrons.