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Appendix A: Theoretic approach in the Fock space

When electrons are transferred through the molecular junction ”electrode1-molecule-electrode2” (1M2), which is
a many-body system, electrons occupy and release single-particle states in both the electrodes and the molecule.
Therefore, it is quite appropriate to describe this process in the Fock space, where the states of a multi-electronic
system are characterized by sets of occupation numbers. For the 1M2 system, these numbers are [1–3] N

rkσ
= 0, 1 and

nλσ = 0, 1. Symbol σ = ±1/2(≡↑, ↓) indicates the projection of the electron spin, which can occupy, respectively, a
state with the wave vector k in the conduction band of the rth electrode or fill λth MO. Hence, the many-electron state
for the rth electrode and the corresponding electronic energy are given by the forms |{N}r⟩ = |N

rk1σ1
, N

rk2σ2
...⟩ =∏

kσ
|N

rkσ
⟩ and E({N}r) =

∑
kσ

E
rkNrkσ

, respectively. (In the non-magnetic electrodes under consideration and
in the absence of a magnetic field, the electron energy E

rk does not depend on σ). Since the interaction of electrodes
with a molecule manifests itself as a perturbation, in the Fock space, the basic states of the 1M2 system and the
corresponding energies can be represented as [3, 4]

|{N}⟩ = |{N}1,M(N), {N}2⟩ ,
E({N}) =

∑
r=1,2 E({N}r) + EM(N) ,

(A1)

where the abbreviation of the electronic state of system 1M2 |{N}1,M(N), {N}2⟩ is identical to
∏
kσ

|N
1kσ

⟩ ×
|M(N)⟩ ×

∏
k′

σ′ |N2k′
σ′⟩. The Eq. (A1) shows that in the Hamiltonian of the 1M2 system

H = H0 + Vem (A2)

the main interactions are concentrated in the term

H0 =
∑
{N}

E({N})|{N}⟩⟨{N}| (A3)

related to the non-interacting electrodes and the molecule, whereas the interaction between them,

Vem =
∑

rkσ,λ

(βrk,λa
+

rkσ
cλσ + β∗

rk,λc
+
λσarkσ

), (A4)

acts as a perturbation [1, 5]. It is responsible for single-electron transitions between many-electron states |{N}r⟩ and
|M(N)⟩. Transitions are generated by electron creation (annihilation) operators a+

rkσ
(a

rkσ
) and c+λσ(cλσ) acting on
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single-electron states belonging to the conduction band and λth MO, respectively. The spin-independent coupling
between these states is βrk,λ.
In low-temperature experiments (4.5 K) with STM-induced EL, the current does not exceed 1 nA, which indicates

a single-electron charge transmission through a 1M2 junction. This means that the elementary hopping process

|Nrkσ,M(N)⟩ → |N ′
rkσ

,M ′(N ′)⟩ (A5)

responsible for recharging the molecule occurs under conditions

E
rkN

′
rkσ

+ EM ′(N ′) = E
rkNrkσ

+ EM(N) (A6)

and

N ′
rkσ

+N ′ = N
rkσ

+N (A7)

indicating the conservation of energy and charge, respectively. Since at 4.5 K the overwhelming number of electrons
in the conduction band fill the energy levels below the Fermi level, then, following the Eqs. (A6) and (A7), we can
see that M(N) → M ′(N ′) recharge of the molecule becomes possible if

∆E
(r)
M(N)M ′(N ′) = EM(N) − EM ′(N ′)

−µr(δN ′,N−1 − δN ′,N+1) > 0 ,
(A8)

where µr is the chemical potential of the rth electrode. As follows from the Eq. (A8), due to the interaction of the

molecule with the electrode r the direction of recharging of the molecule changes at ∆E
(r)
M(N)M ′(N ′) = 0.This happens

at certain critical voltages

Vb = V
(r)
M(N),M ′(N ′) = −V

(r)
M ′(N ′),M(N) . (A9)

In addition to recharging the molecule, Eq. (A5), the processes

|N
rk,M(N), N

r′k′
σ′⟩ → |N ′

rk,M
′(N), N ′

r′k′
σ′⟩ (A10)

are also possible. They reflect direct elastic and inelastic tunneling of electrons between different electrodes r and r′,
when the molecule, respectively, does not change (M’(N) = M(N)) or changes (M’(N) ̸=M (N)) its electronic state. Such
single-step electron tunneling is generated by the operator Ve−e = VemG(E)Vem, where G(E) = [E−H+i0+]−1 is the
Green operator. Given that the interaction Vem is a weak perturbation, then in the Green operator the Hamiltonian

of the 1M2 system H can be replaced by H
(eff)
0 [3, 4, 6]. The difference from H0 that in it the energy of the molecule

is replaced by EM(N) − (i/2)ΓM(N), where ΓM(N) is the broadening of the energy level caused by interaction Vem.
When tunneling electrons, Eq. (A10), the conservation of energy and charge is determined by the conditions

E = E
rkNrkσ

+ EM(N) + E
r′k′N

r′k′
σ′

= E
rkN

′
rkσ

+ EM ′(N) + E
r′k′N ′

r′k′
σ′

(A11)

and

N ′
rkσ

+N ′
r′k′

σ′ = N
rkσ

+N
r′k′

σ′ , (A12)

respectively.
Taking into account the structure of the Fock states |{N}⟩ and using the method of nonequilibrium density matrix

[7], it becomes possible to find both the temporal behavior of the occupancies P (M(N), t) of molecular terms and the
electronic current Ir(t) outgoing from the rth electrode. The corresponding equations have the form

Ṗ (M(N), t) =
∂

∂t
tr′

(
ρ(t)|M(N)⟩⟨M(N)|

)
(A13)

and

Ir(t) = −|e| ∂
∂t

∑
kσ

tr′
(
ρ(t)a+

rkσ
arkσ

)
. (A14)
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Here |e| is the absolute value of the electron charge and ρ(t) is the density matrix of the 1M2 system. The symbol tr′

means that when calculating the trace, summation covers all quantum numbers {N} with the exception of M(N) (in
the Eq. (A13)) and Nrkσ (in the Eq. (A14)).The operator ρ(t) evolves over time t in accordance with the equation

∂ρ(t)/∂t = (i/ℏ)[H, ρ(t)]− D̂ρ(t) , (A15)

where H is the Hamiltonian of the 1M2 system (given by the Eqs. (A2) - (A4)), whereas D̂ is a superoperator
characterizing fast relaxation processes caused by the interaction of the electronic system with a bath or/and a
stochastic field.

Appendix B: States and energies of a molecule in a two-orbital π − π∗ basis

In adiabatic approximation under consideration, the state of molecular term can be represented as |M(N)⟩ =
|m, sz; v⟩ ≃ |m, sz⟩|v⟩, where the symbols m and v are associated with the corresponding electronic and vibrational
characteristics of the molecule. The spin projection sz is 0 and 0, ±1 (for the singlet and triplet states of the molecule
in its charge-neutral form, respectively) and ±1/2 (for the doublet states of both the anionic and cationic forms of
the molecule). Accordingly, in the absence of a magnetic field, the energy of the term can be represented in the form

EM(N) = Emv = Em + E(m)
v , (B1)

where Em is the electronic energy depending on the filling of the MOs with electrons at a fixed spin value, and E
(m)
v

is the contribution associated with nuclear oscillations. Below we will use the symbols m = (j = 0, S, T ) to denote
the ground singlet (S0), excited singlet (S1) and excited triplet (T1) electronic states of a charge-neutral molecule, as
well as symbols m = (α = +, ∗,−) for the ground cation , excited cation and the ground anion states of a charged
molecule. During the optoelectronic process, a change in the electronic energy of the molecule occurs, associated
almost exclusively with the filling of the frontier π electrons of the ring. Therefore, omitting the contribution to
the total electronic energy of that part that does not change, the Hamiltonian of the fluorophore molecule can be
represented as

Hmol =
∑

λ

[∑
σ

(
ελσ + Uλ c

+
λ−σcλ−σ

)
c+λσcλσ

+ 1
2

∑
λ′ ̸=λ

(
Uλλ′

∑
σ c

+
λσcλσ

∑
σ′ c

+
λ′σ′cλ′σ′ − Jλλ′ ŝλŝλ′

)]
,

(B2)

where λ, λ′ = π, π∗. The parameters of Coulomb and exchange interactions between electrons located on different
MOs are denoted by Uππ∗ and Jππ∗ , respectively, while on-site interaction is characterized by the parameter Uππ.
The spin operator ŝλ refers to the electron on the λth MO. In Fock space, the state of an electron occupying the
λth MO with spin projection σ =↑, ↓ can be represented as |1λσ⟩ = |c+λσ⟩, where c+λσ is the operator of electron
creation in a given one-electron state. Therefore, using the symbols j = 0, S, T , we present the corresponding ground
singlet, excited singlet and excited triplet electronic states of the molecule in the forms |0⟩ ≡ |S0⟩ = |c+π↑c

+
π↓⟩,

|S⟩ ≡ |S1⟩ = (1/
√
2)|(c+π↑c

+
π∗↓ − c+π↓c

+
π∗↑)⟩, and |T0⟩ = 1/

√
2|(c+π↑c

+
π∗↓ + c+π↓c

+
π∗↑)⟩, |T±1⟩ = |c+π↑(↓)c

+
π∗↑(↓)⟩. Similarly,

denoting the doubly degenerate states of a charged molecule by α = +, ∗,−, for the ground and excited states
of the cation, as well as the ground state of the anion, we have, respectively|+, σ⟩ = |c+πσ⟩, |∗, σ⟩ = |c+π∗σ⟩ and
|−, σ⟩ = |c+π↑c

+
π↓c

+
π∗σ⟩. Using these expressions, for the proper energies of the Hamiltonian (B2) we get

Em = επnπ + επ∗nπ∗ + Uππnπ↑nπ↓
+Uππ∗nπnπ∗ − Jππ∗⟨m|ŝπ ŝπ∗ |m⟩ . (B3)

Therefore, counting the electronic energy of a molecule from its value in the ground state |0⟩, which is equal to
2επ + Uππ, it becomes possible to represent the electronic energies of the molecule as

E0 = 0 ,
E+ = −(επ + Uππ) ,
E− = επ∗ + 2Uππ∗ ,

E∗ = επ∗ − επ − (επ + Uππ) ,
ES = επ∗ − (επ + Uππ) + Uππ∗ + 3

4Jππ∗ ,
ET = επ∗ − (επ + Uππ) + Uππ∗ − 1

4Jππ∗ .

(B4)

These expressions correspond to electronic configurations reflecting the filling of the π and π∗ orbitals with electrons
in accordance with scheme (a) Fig. 2 If we use the electronic configuration, as in scheme (b) of Fig. 2, then the
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expression for the same electronic energies can be presented in the form given by the Eq. (2) (main text). In the case

of the cationic form of the molecule, the electronic gap ∆E
(+)
el and optical gap E

(+)
opt = E∗ −E+ completely coincides,

i.e.

∆E
(+)
el = E

(+)
opt = επ∗ − επ . (B5)

Appendix C: Critical transmission gaps

Taking into account the Eqs. (A8) and (B1) we arrive at the following expression for the electron-vibrational
transmission gap:

∆E
(r)
αv,jv′ = ∆E

(r)
αj + E(v)

α − E
(v′)
j . (C1)

Here, the value

∆E
(r)
αj = ∆Eαj(0)− κα|e|Vb(δr,2 − η) (C2)

coincides with the recharge energy of the molecule during the 0-0 vibrational transition. The unbiased part of this
energy,

∆Eαj(0) =

{
(E+(∗) + EF )− Ej ,
(E− − EF )− Ej ,

(C3)

can be attributed to the basic transmission gap. As follows from the Eqs. (C1) and (C2), the general expression for
critical voltages has the form

V
(r)
αv,jv′ = κα

∆Eαv,jv′(0)

|e|(δr,2 − η)
, (C4)

where ∆Eαv,jv′(0) is the unbiased electron-vibrational transmission gap.

Appendix D: Kinetic equations and transfer rates.

The characteristic times τvib and τmet of establishing, respectively, the equilibrium Boltzmann distribution

W (m, v) = exp (−E
(m)
v /kBT )/

∑
v exp (−E

(m)
v /kBT ) (for the probability of occupation of vibration levels in the

molecular term) and the Fermi distribution fr(E) = {exp [(E − µr)/kBT ] + 1}−1 (for electrons in the conduction
band of the metal) is much less than τtr. [In the above distributions, kB and T are the Boltzmann constant and the
absolute temperature, respectively.] The appearance of equilibrium distributions on the time scale ∆t ≫ τvib, τmet

allows us to carry out a coarse-grained description of the kinetic process by studying the temporal behavior of
integral occupancies P (m, t) =

∑
v,sz

P (M(N), t) of molecular terms on the time scale ∆t ∼ τtr. Therefore, using the

approach presented in the refs. [6, 8] and based on the Eqs. (A13) and (A15), we arrive at a set of coarse-grained
kinetic equations

Ṗ (m, t) = −
∑
m′

[qmm′P (m, t)− qm′mP (m′, t)] (D1)

associated with the normalization condition∑
m

P (m, t) = 1 , (m = 0, S, T,+, ∗,−) . (D2)

Obtaining the Eq. (D1) assumes that the broadening Γr of the orbital energy level caused by the interaction (A4) of
the molecule with the rth electrode is so small that the inequality

Γr ≪ kBT (D3)

holds for both frontier MOs coupled to the band states of rth electrode. The transfer rates between the six molecular
states involved in the optoelectronic process are determined by three contributions:

qmm′ = q
(mol)
mm′ + q

(chrg)
mm′ + q

(ine)
mm′ . (D4)



5

The first one, q
(mol)
mm′ characterizes the conventional type of intramolecular transitions associated with the intersys-

tem crossing, light emission/absorption and the spontaneous emission. The rates q
(chrg)
mm′ and q

(ine)
mm′ characterize,

respectively, the charging of the molecule and non-radiative processes caused by inelastic interelectrode tunneling of
electrons.

The kinetic equations for the occupancies Pm are determined in terms of the transfer rates qmm′ (Eqs. (D1) and
(D2). There are three types of transfer rates. The first one,

q
(mol)
mm′ = (k

(isc)
m + k

(d)
m )(δm,Sδm′,0 + δm,∗δm′,+)

+k
(isc)
m (δm,Sδm′,T + δm,T δm′,0)

+k
(f)
m′ (δm,0δm′,S + δm,+δm′,∗) ,

(D5)

characterizes the non-radiative intersystem conversional transitions, the light emission, light absorption and the spon-

taneous transitions (elementary rates k
(isc)
m , k

(d)
m = k

(f)
m + k

(spont)
m , k

(f)
m and k

(spont)
m , respectively). The second type

of rates,

q
(chrg)
mm′ = A

(chrg)
mm′

∑
r=1,2

K
(r)
mm′(δm,αδm′,j + δm,jδm′,α) (D6)

is associated with the recharging of the molecule, carried out under the action of interaction Vem (Eq. (A4). Here,

A
(chrg)
αj = δj,0(δα,+ + δα,−)+

1
2 (δj,S + 3δj,T )(δα,+ + δα,− + δα,∗) ,

A
(chrg)
jα = 2[δj,0(δα,+ + δα,−)+

1
2 (δj,S + δj,T )(δα,+ + δα,− + δα,∗)]

(D7)

are the factors reflecting the spin characteristics of the jth and αth states of the molecule. The elementary hopping
process (charging) is determined by the rates

K
(r)
αj = (Γr/ℏ)

∑
vv′

W (α, v)⟨v′|v⟩2N
(
∆E

(r)
αv,jv′

)
. (D8)

The forms are obtained under the assumption that, in the wide-band approximation, the broadening of the orbital
energy levels, Γ1(2), associated with the interaction of the molecule with the electrode 1(2), is the same for both
frontier MOs. The function

N(∆E) = [exp (∆E/kBT ) + 1]−1 (D9)

controls the recharge of the molecule through the transmission gap ∆E = ∆E
(r)
αv,jv′ , Eq. (C1).

The experiment shows [9, 10] that in a ZnPc-based junction at a low temperature, the intensity of the 0-0 transitions
greatly exceeds the phonon- accompanying transitions. Therefore, instead of the form (D8) we can employ the
simplified expression

K
(r)
jα ≃ γrN

(
∆E

(r)
αj

)
,

K
(r)
αj ≃ γrN

(
−∆E

(r)
αj

)
,

(D10)

where the rate γr = (1/ℏ)Γr characterizes the electron hopping between the molecule and the rth electrode. The
third type of transfer rates,

q
(ine)
mm′ = A

(ine)
mm′ K

(ine)
mm′ (δm,jδm′,j′

+δm,∗δm′,+ + δm,+δm′,∗) ,
(D11)

refers to the rate of inelastic electron tunneling that accompanies an intramolecular nonradiative transition. In the
Eq. (D11) the factors

A
(ine)
jj′ = δj,0(δj′,S + 3δj′,T )+

δj,S(δj′,0 +
3
2δj′,T ) + δj,T (δj′,0 +

1
2δj′,S)

(D12)
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and

A
(ine)
αα′ = 2(δα,+δα′,∗ + δα,∗δα′,+) (D13)

reflect the role of the spin states of the molecule, while

K
(ine)
mm′ =

1

ℏ
∑
rr′

F
(rr′)
mm′ (D14)

is the elementary tunneling rate. Using the same assumptions that were employed to obtain the expressions (D10)
and taking into account the fact that at low temperature the Heavyside unit function Θ(µr −E) simulates the Fermi
distribution function fr(E), we get

F
(rr′)
jj′ = ΓrΓr′Θ(Ej + µr − Ej′ − µr′)

×
[

1
Γ+

(
φ
(r)
+j′ − φ

(r′)
+j

)
+ 1

Γ−

(
φ
(r′)
−j′ − φ

(r)
−j

)
+ 1

Γ∗

(
φ
(r)
∗j′ − φ

(r′)
∗j

)
(δj,Sδj′,T + δj,T δj′,S)

] (D15)

for j, j′(= 0, S, T ), and

F
(rr′)
αα′ = ΓrΓr′Θ(Eα + µr − Eα′ − µr′)

×
∑

j
1

4Γj
(δj,S + 3δj,T )

(
ϕ
(r)
αj − ϕ

(r′)
α′j

)
.

(D16)

for α, α′(= +, ∗). The dependence of the values (D15) and (D16) on the bias voltage is concentrated in the transmission
gaps (C2) through factors

φ
(r)
αj = arc tan

(
2∆E

(r)
αj /Γα

)
,

ϕ
(r)
αj = arc tan

(
2∆E

(r)
αj /Γj

)
,

(D17)

as well as by means of broadenings of the energy levels of the charge-neutral molecule and its charged forms,

Γj =
∑
α

A
(chrg)
jα

∑
r

ΓrΘ
(
−∆E

(r)
αj

)
(D18)

and

Γα =
∑
j ̸=0

A
(chrg)
αj

∑
r

ΓrΘ
(
∆E

(r)
αj

)
, (D19)

respectively.

Appendix E: Sequential and direct (tunneling) components of an electronic current

To obtain an expression for the electron current, we use the Eqs. (A14) and (A15). By introducing the current
unit I0 = (|e|/πℏ)×1 eV≈ 77.8µA, the partial sequential component of the current can be represented as

I
(r,seq)
m = (−1)r+12πℏI0

×
[
δm,j

∑
α A

(seq)
jα K

(r)
jα + δm,α

∑
j A

(seq)
αj K

(r)
αj

] (E1)

where K
(r)
jα and K

(r)
αj are the elementary hopping (charging) rates, Eq. (D10), while

A
(seq)
jα = δj,0(δα,− − δα,+)

+ 1
2 (δj,S + δj,T )(δα,− − δα,+ − δα,∗) ,

A
(seq)
αj = 1

2 [δj,0(δα,− − δα,+)

+ 1
2 (δj,S + 3δj,T )(δα,− − δα,+ − δα,∗)

(E2)
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are the spin factors. [Multiplier (−1)r+1 fixes the direction of sequential electron transfer from the electrode r = 1 at
µ1 > µ2.]
The partial component of the elastic current,

I(ela)m = I0ℏ(δm,jA
(ela)
j + δm,αA

(ela)
α )K(ela)

m (E3)

is expressed through the elementary tunneling rate

K(ela)
m =

1

ℏ

(
F (12)
mm − F (21)

mm

)
(E4)

and the corresponding spin factors

A
(ela)
j = 2δj,0 +

1
2δj,S + 3

2δj,T ,

A
(ela)
α = 2(δα,+ + δα,− + δα,∗) .

(E5)

As for the partial component of the inelastic current,

I(ine)m = I0ℏ
∑

m′( ̸=m)

A
(ine)
mm′ K

(ine)
mm′ , (E6)

it is determined by the elementary tunneling rate K
(ine)
mm′ , Eq. (D14) and the spin factor A

(ine)
mm′ , Eqs. (D12) - (D13).
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