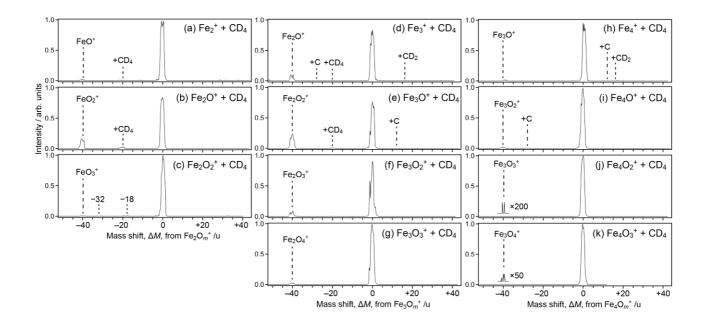
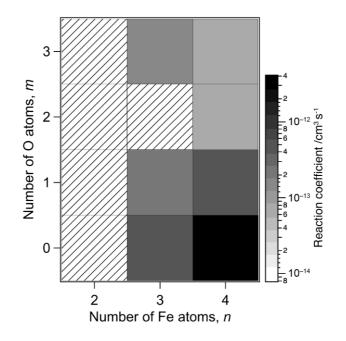
Electronic Supplementary Information

Reaction of size-selected iron-oxide cluster cations with methane:


A model study of rapid methane loss in the Mars' atmosphere

Masashi Arakawa,*[†]^a Satoshi Kono,^a Yasuhito Sekine^b and Akira Terasaki^{* a}


^aDepartment of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. E-mail: arakawa@chem.kyushu-univ.jp, terasaki@chem.kyushu-univ.jp

^bEarth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. E-mail: sekine@elsi.jp

[†]Present address: Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. E-mail: arakawa@geo.kyushuu.ac.jp

Figure S1. Mass spectra of ions produced from the reaction of $\text{Fe}_n \text{O}_m^+$ and $\text{Fe}_{n-1} \text{O}_{m+1} \text{Ar}^+$ (n = 2, 3 and 4) with CD₄, which were recorded in the low-sensitivity mode that should be compared with Fig. 1. Reactant ions are (a–c) n = 2, m = 0-2; (d–g) n= 3, m = 0-3; (h–k) n= 4, m = 0-3. The abscissa shows a mass shift, ΔM , from Fe_nO_m⁺. Peaks are assigned to adducts to Fe_nO_m⁺ in the $\Delta M \ge 0$ region, while adducts to Fe_{n-1}O_{m+1}⁺ after desorption of Ar in the $\Delta M < 0$ region.

Figure S2. Rate coefficients of activation of CH_4 by $Fe_nO_m^+$ as a function of the numbers of iron, *n*, and oxygen atoms, *m*. The hatched pixels represent unexamined compositions.

Figure S3. Rate coefficients obtained for $\text{Fe}_n O_m Ar^+$ as a function of the numbers of iron, *n*, and oxygen atoms, *m*. The reaction channel is: (a) dehydrogenation of CD₄ and (b) adsorption of CD₄. The hatched pixel at (n,m) = (1,4) represents an unexamined composition. Note that the rate coefficients are much larger than those for $\text{Fe}_n O_m^+$ presented in Fig. 3 by about two orders of magnitude, indicating the role of the Ar atom in stabilizing methane adducts by exchanging the ligand.