Electronic Supplementary Information

Direct reduction of NO into N₂ catalyzed by fullerene-supported

rhodium clusters

Ruomeng Li, Ya-Ke Li*, Jianzhi Xu, Gao-Lei Hou*

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi´an Jiaotong University, Xi´an, 710049 Shaanxi, China

E-mail: yake.li@xjtu.edu.cn; gaolei.hou@xjtu.edu.cn

Table of Content

Figure S1 Calculated isomers of C _{co} Rh ₄ ⁺	52
Figure S2. Calculated isomers of Rh₄ ⁺	S2
Figure S3. Calculated isomers of C ₆₀ Rh⁺	S2
Figure S4. Comparison between theoretical and experimental infrared spectra of $C_{60}Rh_4^+$	and
IRMPD spectra	S3
Figure S5. Reaction pathway of NO on $C_{60}Rh^+$	S4
Figure S6. Reaction pathway of NO on square Rh₄⁺	S5
Figure S7. Calculated NBO partial charges (<i>e</i>) for the reaction of pyramid Rh ₄ ⁺ and NO	S6
Figure S8. Calculated NBO partial charges (<i>e</i>) for the reaction of square Rh4 ⁺ and NO	S7
Figure S9. Calculated NBO partial charges (e) for the reaction of C ₆₀ Rh ⁺ and NO	S8
Cartesian coordinates of C ₆₀ Rh ₄ ⁺ , C ₆₀ Rh ⁺ , and Rh ₄ ⁺	S9
References	S11

Confirmation of the ground state structures of Rh₄⁺, C₆₀Rh₄⁺, and C₆₀Rh⁺

Figures S1, S2, and S3 respectively show the energy differences between the isomers of Rh_4^+ , $C_{60}Rh_4^+$, and $C_{60}Rh^+$. Calculations show that for Rh_4^+ the pyramidal structure is more stable than the square structure, with the doublet states being slightly more stable than the quartet states. For $C_{60}Rh_4^+$, the structure with a square Rh_4^+ moiety possessing a quartet state is most stable and its simulated infrared spectrum gives the largest cosine similarity score (see Figure S4). For $C_{60}Rh^+$, the η^{6-6} structure with a triplet state is the most stable one, consistent with previous results.¹

Figure S1. Energy differences (in eV) between different isomers of Rh4⁺ at the BPW91, PBE, and B3LYP levels.

Figure S2. Energy differences (in eV) between different isomers of $C_{60}Rh_4^+$ at the BPW91, PBE, and B3LYP levels.

Figure S3. Energy differences (in eV) between different isomers of C₆₀Rh⁺ at the BPW91 level.

Cosine Similarity Score

Cosine similarity score was employed to quantitatively evaluate the agreement between calculated and experimental infrared spectra.²⁻⁵ Figure S4 displays the calculated cosine similarity scores of the theoretical spectra and experimental one for $C_{60}Rh_4^+$. It can be seen that the cosine similarity score for the Iso2 quartet is largest, suggesting Iso2 $C_{60}Rh_4^+$ with a quartet state the most probable structure exist in the experiment.

Figure S4. The theoretical infrared spectra for the four isomers of $C_{60}Rh_4^+$ and their comparison with experimental spectrum. Cosine similarity scores are provided.

Figure S5. Reaction pathway of NO reduction on $C_{60}Rh^+$ calculated at the BPW91/6-31G(d)&SDD level of theory. R represents for reactants, IN for intermediates, TS for transition states, and P for products. All energies are provided relative to the energies of the reactants, i.e., $C_{60}Rh^+$ and two NO molecules. Calculations show that N–O dissociations post high energy barriers of 103.2 (TS1) and 89.7 (TS2) kcal/mol, respectively.

Figure S6. Reaction pathway of NO reduction on square Rh_4^+ calculated at the BPW91/6-31G(d)&SDD level of theory. R represents for reactants, IN for intermediates, TS for transition states, and P for products. All energies are provided relative to the energies of the reactants, i.e., Rh_4^+ and two NO molecules.

Figure S7. Calculated NBO partial charges (*e*) of pyramid Rh_4^+ cluster (black square) of NO reduction catalyzed by Rh_4^+

Figure S8. Calculated NBO partial charges (*e*) of square Rh₄⁺ cluster (black square) of NO reduction catalyzed by Rh₄⁺

Figure S9. Calculated NBO partial charges (*e*) of Rh^+ (black square) and C_{60} (orange star) of NO reduction catalyzed by $C_{60}Rh^+$

-					· ·			
	C ₆₀ Rh₄⁺				C₀₀Rh⁺			
	С	8.5931280	6.7238380	7.5364780	С	2.1089020	-2.2498480	-1.7938820
	С	9.4582700	6.3148530	6.4189110	С	1.2936900	-1.7040880	-2.8645880
	С	7.6709300	5.7625170	8.1271720	С	1.5306790	-3.1045930	-0.8334570
	С	9.4215980	4.9973880	5.9426630	С	-0.0736710	-2.0290860	-2.9412830
	С	9.5093960	4.7352090	4.5172900	С	-1.0468060	-1.0016560	-3.2677620
	С	9.5499350	7.4220430	5.4823380	С	1.7343240	-0.3355590	-3.1147160
	С	9.6425580	7.1739790	4.1007210	С	0.7935160	0.6573180	-3.4285360
	С	9.6196220	5.8052170	3.6088130	С	-0.6222170	0.3191680	-3.5029720
	С	5.7909210	7.5697550	8.2658840	С	2.8005500	-1.9815320	0.9633160
	С	6.7707700	8.5068530	7.5719080	С	3.3902040	-1.0904080	-0.0216480
	С	6.2584510	6.1412450	8.5552880	С	1.8781760	-2.9609770	0.5663220
	C	8.1379890	8.1144760	7.2558410	C	3.0568370	-1.2249490	-1.3801770
	C	8.7359940	8.5205190	5.9741390	C	2.8252750	-0.0395980	-2.1958290
	C	6.0179650	9.2887850	6.5752740	C	3.5031190	0.2363400	0.5714810
	C	6.6254480	9.6984810	5.3796710	C	3.2784060	1.3783010	-0.2151970
	C	8.0074400	9.3094750	5.0732810	С	2.9346670	1.2382860	-1.6242060
	C	4.1458960	5.2608700	7.4880580	C	0.4109740	-2.4768940	2.5271650
	C	3.6945830	6.6399060	7.2092580	C	1.3854870	-1.4768630	3.0151700
	C	5.3987670	5.0272240	8.0625690	C	0.6658770	-3.212/410	1.3603970
	C	4.512/330	7.7309570	7.5163260	C	2.6021020	-1.2240370	2.2186540
	C	4.6460890	8.8174830	6.5635910	C	2.9850160	0.1752160	1.9279470
	C	2.9462430	6.6170390	5.9681970	C	0.5955320	-0.3205580	3.4933450
		3.0396650	7.6903380	5.0592540		1.0251710	0.9914180	3.2421870
		3.9066050	8.8129520	5.3638820		2.2369800	1.2424090	2.4473640
		5.7733260	3.1234480	6.5109520 F 022F860		-1./180280	-3.0432630	0.7126580
	C	4.4020310	3.3530230	5.9335800	C	-1.9/92800	-2.2089850	1.91/5/10
	C	0.2364240	3.9051920	7.3434330 6 1119360	C	-0.4151620	1 0952010	0.4412940
	C	2 0255780	5 2465000	5 4726700	C	-0.9277800	-1.9652910	2.8049020
	C	2.9233780	2 0061250	J.4730790 4 5044010	C	2 0562050	1 228//20	1 5007750
	C	3 8337770	3.0901330	3 601//90	C	-2.9303930	0.030/270	2 162/0/0
	C	3.003/160	1 9913910	1 0963770	C	-2.8470230	0.0354270	2.1024040
	C	8 4864770	4 0261300	6 5232510	C	-0 6721620	-2 9159070	-1 9496360
	C C	8 0109330	3 1702840	5 4512760	C C	-2 0185940	-2 4317050	-1 6670950
	C	7.6209670	4.4024890	7.5606810	C	0.1143590	-3.4420150	-0.9156060
	c	6.6760010	2.7249400	5.4439950	c	-2.5321840	-2.4970520	-0.3584160
	c	5.9206730	2.7046210	4.2004330	C	-3.2990930	-1.3792340	0.1823070
	C	8.6395440	3.6071970	4.2105250	C	-2.2492840	-1.2506720	-2.4792130
	C	7.9098930	3.5903750	3.0128560	C	-2.9837820	-0.1705900	-1.9560370
	С	6.5250560	3.1325130	3.0070840	С	-3.5218610	-0.2373010	-0.6026550
	С	4.0139730	5.7026320	2.0915070	С	-2.1267230	2.2499100	1.7662820
	С	4.4592200	4.3422500	2.3648160	С	-3.0775030	1.2247200	1.3476100
	С	5.7832380	3.9646580	2.0719980	С	-3.4092500	1.0887880	-0.0098450
	С	4.9071860	6.6367740	1.5347490	С	-1.5450930	3.1036880	0.8102490
	С	4.0527750	8.3973480	3.0533370	С	0.6581630	2.9072740	1.9255780
	С	3.1271430	7.4284570	3.6314430	С	0.0579010	2.0205330	2.9153830
	С	3.1114160	6.1055890	3.1577710	С	-1.3123050	1.6988090	2.8348790
	С	4.9263140	8.0062730	2.0253270	С	-0.1278080	3.4392770	0.8941820
	С	6.7767260	9.2855940	3.0655990	С	1.6999560	3.0433300	-0.7400670
	C	5.8733570	9.6850240	4.1380050	C	2.5138970	2.4918670	0.3284670
	C	4.5345850	9.2510000	4.1286330	C	2.0035030	2.4233300	1.6406410
	C	6.3123030	8.4607000	2.0303800	C	0.4000330	3.5070000	-0.4639500
	C	8.41/1530	7.1494480	2.0918030	C	-0.438/310	2.4609330	-2.5439500
		8.8985090	8.0038510	3.1659640		0.9072190	1.9833030	-2.8354140
		8.0932470 7.1462000	9.0539310	3.0404920		1.92/9280	2.2080390	-1.9490900
		7.1402980	1.3/12500	1.000000		-0.0004930	5.215311U	-1.3012330
		0.7004930	4.9323730	1.4959050		-2.8013840	1.9/15480	-0.9982620
		0.021/830	4.7009170	2.0/440/0		-2.5431010	1.19448/0	-2.2015440
		0.0031890	5.10/0/00	2.3009930		1 2005240	1.4321390	-2.9010000
	Rh	5 8300550	0.2448440 8 1378600	10 10/8570	C Rh	-1.0095240	2.3033630	-0.3333490 1 0530000
	Rh	2.8390330 8.87/2760	6 63376020	9 6459020	INI .	5.0654410	-2.0010700	050050
	Rh	8 0705250	9 0842420	9 1508800				
	Rh	6.5818390	6.1751120	10.5638460				
		0.0010000	J. 1 / J 1 1 2 U	_0.0000000				

Cartesian coordinates of the most stable $C_{60}Rh_4^+$, $C_{60}Rh^+$, and Rh_4^+ at the BPW91/6-31G(d)&SDD level of theory

Rh_4^+			
Rh	0.2128110	1.2404850	5.4326590
Rh	2.4844410	0.5876130	4.9540880
Rh	1.7865360	2.9451640	4.4989710
Rh	2.0651730	2.2369160	6.7864860

References

(1) German, E.; Hou, G.-L.; Vanbuel, J.; Bakker, J. M.; Alonso, J. A.; Janssens, E.; López, M. J. Infrared spectra and structures of $C_{60}Rh_n^+$ complexes. *Carbon* **2022**, *197*, 535-543.

(2) Fu, W.; Hopkins, W. S. Applying machine learning to vibrational spectroscopy. *J. Phys. Chem. A* **2018**, *122*, 167-171.

(3) Kempkes, L. J.; Martens, J.; Berden, G.; Houthuijs, K. J.; Oomens, J. Investigation of the position of the radical in z₃-ions resulting from electron transfer dissociation using infrared ion spectroscopy. *Faraday Discuss.* **2019**, *217*, 434-452.

(4) Müller, F.; Stückrath, J. B.; Bischoff, F. A.; Gagliardi, L.; Sauer, J.; Debnath, S.; Jorewitz, M.; Asmis, K. R. Valence and Structure Isomerism of Al₂FeO₄⁺: Synergy of Spectroscopy and Quantum Chemistry. *J. Am. Chem. Soc.* **2020**, *142*, 18050-18059.

(5) Xu, J.; Bakker, J. M.; Lushchikova, O. V.; Lievens, P.; Janssens, E.; Hou, G.-L. Pentagon, Hexagon, or Bridge?
Identifying the Location of a Single Vanadium Cation on Buckminsterfullerene Surface. *J. Am. Chem. Soc.* 2023, 145, 22243-22251.