Sublimation of pyridine derivatives: Fundamental aspects and application for two-component crystals screening

Voronin A.P., Simonova O.R., Volkova T.V. and Perlovich G.L.*

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya

St., 153045 Ivanovo, Russia. E-mail: glp@isc-ras.ru

*To whom correspondence should be addressed: Telephone: +7-4932-533784; Fax: +7-4932- 336237;

E-mail glp@isc-ras.ru

Table of Contents:

Title	Description	Page
Figure S1	The diagrams of the residuals $(\ln p (\exp) - \ln p (regression))$ as a function of temperature for the compounds under study	3
Figure S2	Molecular packing in crystals of studied pyridine derivatives	4-5
Figure S3	Difference between the experimental sublimation enthalpy and lattice energy estimated using eq. (15) based on periodic DFT-D3 computations using different functionals with lattice parameters optimised during structure relaxation.	6
Figure S4	Difference between the experimental sublimation Gibbs energy and lattice Gibbs energy estimated using eq. (14) based on periodic DFT-D3 computations using different functionals with lattice parameters fixed during structure relaxation.	6
Table S1	Compounds used in this study.	7
Table S2	Molecular volumes (V_{vdw}) of molecules extracted from crystals of studied compounds, unit cell volumes (V_{cell}) , number of molecules in the unit cell (Z^*Z^{\prime}) , free volumes (V_{free}) and packing parameters (β) . For 2AmPy, two structures with diffraction data collected at different temperatures (T) were used.	8
Table S3	Vapour pressures (p), sublimation enthalpies (H_{sub}^T), Gibbs energies (G_{sub}^T), and	9-11
	entropies (S_{sub}^{T}) measured using the transpiration technique.	
Table S4	Metric and energetic parameters of selected hydrogen bonds in the studied crystals optimised using different functionals. The interaction energies are estimated from QTAIMC data according to eq. (15).	12
Table S5	Experimental and calculated lattice parameters of studied pyridine derivatives after DFT-D3 optimisation using various functionals with pob-TZVP_rev2 basis set and D3(BJ,ABC) dispersion correction.	13
Table S6	Total electronic energies of crystals (E^{cryst}) and isolated molecules (E^{mol}), zero- point energies (ZPE), basis set superposition energy (BSSE) and thermal corrections (E_{therm}), pressure-volume term (pV), entropy corrections (TS), total enthalpies and free Gibbs energies of crystals and molecules (H^{cryst} , H^{mol} , G^{cryst} , G^{mol}), Cocrystal Formation Energies (E_{form}) and Cocrystal Formation Gibbs Energies (E_{form}) obtained from periodic DFT-D3 calculations with various functionals (fixed cell optimisation). The units are a.u. per unit cell and kJ·mol ⁻¹ .	14- 15
Table S7	Total electronic energies of crystals (E^{cryst}) and isolated molecules (E^{mol}), zero-	16-
	point energies (ZPE), basis set superposition energy (BSSE) and thermal corrections (E_{therm}), pressure-volume term (pV), entropy corrections (TS), total enthalpies and free Gibbs energies of crystals and molecules (H^{cryst} , H^{mol} , G^{cryst} , G^{mol}), Cocrystal Formation Energies (E_{form}) and Cocrystal Formation Gibbs Energies (E_{form}) obtained from periodic DFT-D3 calculations with various functionals (relaxed cell optimisation). The units are a.u. per unit cell and kJ·mol ⁻¹ .	17

Table S8	Lattice energies E_{latt} of studied compounds estimated using parametrised force field schemes PIXEL and CE-B3LYP. The numbers in brackets display the discrepancies between calculated E_{latt} and experimental sublimation enthalpy at 298.15 K. All units are kJ·mol ⁻¹ .	18
Table S9	Contributions into the crystal lattice energy from different kinds of non- covalent interactions in crytsals of pyridine derivatives estimated by QTAIMC depending on the functional used for optimisation and wavefunction calaculation and given in kJ·mol ⁻¹ and % of total lattice energy value.	19
Table S10	Sublimation Gibbs energies, ΔG_{sub}^{298} , sublimation enthalpies, ΔH_{sub}^{298} , and fusion	20
	temperatures, T_{fus} , of compounds structurally related to aminopyridine isomers.	
Table S11	Sublimation Gibbs energies, ΔG_{sub}^{298} , sublimation enthalpies, ΔH_{sub}^{298} , and fusion	21-
	temperatures, T_{fus} , of compounds structurally related to 3-Hydroxypyridine.	22
Table S12	Sublimation Gibbs energies, ΔG_{sub}^{298} , sublimation enthalpies, ΔH_{sub}^{298} , and fusion	23-
	temperatures, T_{fus} , of compounds structurally related to 2-(1H-Imidazol-2-	24
Table S13	Coefficients of the correlation equation (31) for the clusters including the	25
	considered compound as a one from the components of the two-component crystal.	

(e)

Figure S1. The diagrams of the residuals $(\ln p (exp) - \ln p (regression))$ as a function of temperature for the compounds under study: 2AmPy (a), 3AmPy (b), 4AmPy (c), .3OHPy (d), ImPy (e).

(a)

(e) Figure S2. Molecular packing in crystals of studied pyridine derivatives: 2AmPy (a), 3AmPy (a), 4AmPy (c), 3OHPy (d), ImPy (e).

Figure S3. Difference between the experimental sublimation enthalpy and lattice energy estimated using eq. (15) based on periodic DFT-D3 computations using different functionals with lattice parameters optimised during structure relaxation. The tolerance range of $\pm 8 \text{ kJ} \cdot \text{mol}^{-1}$ from the experimental value is given in cyan.

Figure S4. Difference between the experimental sublimation Gibbs energy and lattice Gibbs energy estimated using eq. (14) based on periodic DFT-D3 computations using different functionals with lattice parameters fixed during structure relaxation. The tolerance range of $\pm 8 \text{ kJ} \cdot \text{mol}^{-1}$ from the experimental value is given in cyan.

Table S1. Compounds used in this study.

Compound	CASRN	Source	Mass fraction	ourity, %
			Stated	Observed
2-Aminopyridine (2AmPy)	504-29-0	Aldrich	≥98	99.6
3-Aminopyridine (3AmPy)	462-08-08	Aldrich	≥99	99.2
4-Aminopyridine (4AmPy)	504-24-5	Aldrich	≥98	99.1
3-Hydroxypyridine (3OHPy)	109-00-2	Aldrich	≥98	99.7
2-(1H-Imidazol-2-yl)pyridine (ImPy)	18653-75-3	Aldrich	≥97	99.4

Table S2. Molecular volumes (V_{vdw}) of molecules extracted from crystals of studied compounds, unit cell volumes (V_{cell}) , number of molecules in the unit cell (Z^*Z^2) , free volumes (V_{free}) and packing parameters (β) . For 2AmPy, two structures with diffraction data collected at different temperatures (T) were used.

Compound	CSD ID	Space	$V_{\rm vdw}$, Å ³	$V_{\text{cell}}, \text{\AA}^3$	Z^*Z'	$V_{\text{cell}}, \text{\AA}^3$	$V_{\text{free}}, \text{\AA}^3$	β	<i>T</i> , K
		group				per 1 mol.	per 1 mol.	V _{free} /V _{vdw}	
2AmPy	AMPYRD	$P2_1/c$	86.73980	502.068	4	125.517	38.7772	0.309534	RT
	AMPYRD01	$P2_1/c$	86.91360	486.291	4	121.57275	34.65915	0.398777	150
3AmPy	AMIPYR	Сc	86.63506	506.271	4	126.56775	39.93269	0.46093	RT
4AmPy	AMPYRE01	$P2_{1}2_{1}2_{1}$	87.67611	477.325	4	119.33125	31.65514	0.361046	RT
30HPy	BIRYIK11	$P2_1/c$	84.64698	946.678	8	118.3348	33.68777	0.39798	RT
ImPy	EHUKIC	P-1	126.8329	2878.94	16	179.9338	53.10088	0.418668	RT

T, K ^a	<i>m</i> , mg ^b	$V(N_2)^c$, dm ³	$T_{\rm a},{ m K}^{ m d}$	Flow, dm ³ ·h ⁻¹	p, Pa ^e	<i>u</i> (<i>p</i>), Pa	$G_{sub}^{^{T}}$, kJ·mol ⁻¹	S_{sub}^T , J·K ⁻¹ ·mol ⁻¹
2AmPy: H_{sub}^T =	$= (76.5 \pm 0.9) \text{ kJ}$	·mol ⁻¹						
$\ln(p[Pa]) = (32)$	$.6 \pm 0.4) - (9202)$	$(\pm 350)/T, R^2 = 0.998$	39					
303.15	0.35	1.08	295.15	1.90	8.49	0.24	34.38	138.95
304.15	0.33	0.95	295.15	1.90	9.18	0.25	34.69	137.48
305.15	0.43	1.11	294.65	1.90	10.16	0.28	35.06	135.81
306.15	0.50	1.17	295.85	1.90	11.06	0.30	35.39	134.29
307.15	0.45	0.95	295.05	1.90	12.45	0.34	35.81	132.49
308.15	0.50	0.95	295.50	1.90	13.75	0.37	36.18	130.85
309.15	0.69	1.17	295.75	1.90	15.34	0.41	36.58	129.14
310.15	0.61	0.95	295.75	1.90	16.78	0.44	36.93	127.60
311.15	0.66	0.95	295.55	1.90	18.10	0.48	37.24	126.18
312.15	0.87	1.14	295.80	1.90	20.02	0.53	37.62	124.55
313.15	0.81	0.95	295.65	1.90	22.24	0.58	38.02	122.89
314.15	0.87	0.95	296.15	1.90	23.83	0.62	38.32	121.54
3AmPy: H_{sub}^{T} =	$= (80.3 \pm 1.5) \text{ kJ}$	·mol ⁻¹						
$\ln(p[Pa]) = (32)$	$.2 \pm 0.6) - (9660)$	$(\pm 177)/T, R^2 = 0.995$	52					
303.15	0.10	2.41	295.40	1.90	1.13	0.91.10-2	29.29	168.27
304.15	0.10	2.09	295.80	1.90	1.26	0.98.10-2	29.67	166.46
305.15	0.22	4.02	295.70	1.90	1.45	1.25.10-2	30.11	164.47
306.15	0.13	2.03	297.10	1.90	1.64	1.35.10-2	30.53	162.56
307.15	0.13	1.90	295.45	1.90	1.85	1.83.10-2	30.93	160.73
308.15	0.13	1.74	296.40	1.90	2.02	$2.09 \cdot 10^{-2}$	31.26	159.14
309.15	0.18	2.12	295.95	1.90	2.26	$2.76 \cdot 10^{-2}$	31.66	157.34
310.15	0.31	3.36	296.05	1.90	2.43	3.20.10-2	31.95	155.90
311.15	0.22	2.09	295.65	1.90	2.78	4.23·10 ⁻²	32.40	153.96
312.15	0.28	2.31	294.65	1.90	3.11	6.06·10 ⁻²	32.79	152.21
313.15	0.45	3.48	294.55	1.90	3.34	8.34·10 ⁻²	33.08	150.79
314.15	0.22	1.58	296.15	1.90	3.69	0.91.10-2	33.45	149.14
316.15	0.34	2.03	295.55	1.90	4.36	0.98.10-2	34.10	146.15
317.15	0.29	1.65	295.65	1.90	4.67	1.25.10-2	34.39	144.17

Table S3. Vapour pressures (p), sublimation enthalpies (H_{sub}^{T}), Gibbs energies (G_{sub}^{T}), and entropies (S_{sub}^{T}) measured using the transpiration technique.

4AmPy: $H_{sub}^{T} = (86.7 \pm 0.9) \text{ kJ} \cdot \text{mol}^{-1}$

 $\ln(p[Pa]) = (32.1 \pm 0.3) - (10423 \pm 103)/T, R^2 = 0.9990$

311.15	0.01	1.49	297.25	1.90	2.26.10-1	0.60.10-2	33.59	170.68
313.15	0.02	1.49	297.40	1.90	$2.85 \cdot 10^{-1}$	0.91.10-2	33.21	170.83
315.15	0.03	2.12	297.00	1.90	3.54·10 ⁻¹	0.98·10 ⁻²	32.86	170.85
317.15	0.05	3.48	297.85	1.90	$4.10 \cdot 10^{-1}$	1.25.10-2	32.67	170.35
319.15	0.04	2.12	297.25	1.90	4.99·10 ⁻¹	1.35.10-2	32.36	170.28
321.15	0.05	2.12	297.25	1.90	6.17·10 ⁻¹	1.83.10-2	32.00	170.34
323.15	0.05	1.81	295.65	1.90	7.86·10 ⁻¹	$2.09 \cdot 10^{-2}$	31.55	170.68
325.15	0.07	1.81	295.65	1.90	9.58·10 ⁻¹	$2.76 \cdot 10^{-2}$	31.20	170.68
328.15	0.10	1.96	296.10	1.90	1.27	3.20.10-2	32.03	160.62
331.15	0.11	1.71	295.30	1.90	1.64	4.23.10-2	33.03	162.07
334.15	0.1	1.87	295.65	1.90	2.25	6.06·10 ⁻²	34.20	157.12
337.15	0.21	1.81	296.65	1.90	3.08	8.34·10 ⁻²	35.38	152.20
30HPy: $H_{sub}^{T} =$	(102.0 ± 0.4) kJ	·mol ⁻¹						
$\ln(p[Pa]) = (36.$	$5\pm0.2)-(12266)$	$5 \pm 52)/T$, $R^2 = 0.99$	998					
323.15	0.05	8.04	294.55	2.65	$1.48 \cdot 10^{-1}$	$0.71 \cdot 10^{-2}$	36.03	204.15
325.15	0.06	9.10	294.50	2.65	$1.80 \cdot 10^{-1}$	$0.85 \cdot 10^{-2}$	35.72	203.85
327.15	0.06	6.94	294.55	2.65	$2.48 \cdot 10^{-1}$	$0.92 \cdot 10^{-2}$	35.15	204.33
329.15	0.10	8.48	294.75	2.65	$2.94 \cdot 10^{-1}$	$0.98 \cdot 10^{-2}$	34.82	204.09
331.65	0.12	8.39	295.10	2.65	3.83.10-1	$1.46 \cdot 10^{-2}$	34.36	203.95
333.15	0.18	10.28	294.95	2.65	$4.54 \cdot 10^{-1}$	$1.64 \cdot 10^{-2}$	34.04	204.00
335.15	0.07	3.09	295.65	2.65	$5.80 \cdot 10^{-1}$	$1.95 \cdot 10^{-2}$	33.56	204.20
337.15	0.09	3.36	295.65	2.65	$7.21 \cdot 10^{-1}$	$2.30 \cdot 10^{-2}$	33.15	204.20
339.15	0.09	2.56	296.65	2.65	8.94·10 ⁻¹	$2.74 \cdot 10^{-2}$	32.74	204.21
341.15	0.13	3.11	295.65	2.65	1.09	3.22.10-2	32.86	202.67
343.15	0.26	5.04	296.65	2.65	1.35	3.87.10-2	33.66	199.16
345.15	0.18	2.83	296.15	2.65	1.66	$4.66 \cdot 10^{-2}$	34.46	195.67
347.15	0.18	2.25	297.65	2.65	2.02	$5.56 \cdot 10^{-2}$	35.22	192.35
348.15	0.40	4.64	297.15	2.65	2.22	6.06·10 ⁻²	35.60	190.73
349.15	0.28	2.96	297.15	2.65	2.47	6.68·10 ⁻²	36.01	189.00
ImPy: $H_{sub}^T = (1)$	107.2 ± 0.5) kJ·m	nol ⁻¹						
$\ln(p[Pa]) = (38.$	$8 \pm 0.2) - (12893)$	$3 \pm 64)/T, R^2 = 0.99$	997					
324.15	0.07	10.60	294.95	2.65	3.67.10-1	$8.44 \cdot 10^{-3}$	33.70	226.76
326.15	0.04	4.55	294.65	2.65	4.69·10 ⁻¹	$1.08 \cdot 10^{-2}$	33.23	226.78
328.15	0.04	3.80	294.40	2.65	5.81.10-1	$1.10 \cdot 10^{-2}$	32.86	226.56
330.15	0.07	5.04	294.25	2.65	$7.41 \cdot 10^{-1}$	$1.41 \cdot 10^{-2}$	32.39	226.60
332.65	0.09	4.99	295.55	2.65	1.01	$1.92 \cdot 10^{-2}$	31.82	226.59

335.15	0.11	5.04	294.80	2.65	1.31	3.80.10-2	32.79	222.02
337.65	0.08	2.65	294.75	2.65	1.81	5.25.10-2	33.94	216.96
340.15	0.19	4.42	294.15	2.65	2.43	5.59·10 ⁻²	35.04	212.15
342.15	0.28	5.57	294.15	2.65	2.90	6.67·10 ⁻²	35.74	208.86
344.15	0.22	3.58	297.65	2.65	3.60	8.28.10-2	36.57	205.23
346.15	0.16	2.03	297.15	2.65	4.42	$1.02 \cdot 10^{-1}$	37.38	201.72
347.15	0.20	2.21	296.90	2.65	5.11	1.02.10-1	37.90	199.63
348.15	0.27	2.78	297.65	2.65	5.60	$1.12 \cdot 10^{-1}$	38.27	197.98
349.15	0.29	2.65	297.40	2.65	6.23	$1.79 \cdot 10^{-1}$	38.69	196.21
351.15	0.43	3.09	297.15	2.65	7.96	$2.63 \cdot 10^{-1}$	39.63	192.42

^{*a*} Saturation temperature with u(T)=0.1 K; ^{*b*} Mass of transferred sample condensed at T=273 K; ^{*c*} Volume of nitrogen (u(V)=0.005 dm³) used to transfer a sample of mass m with u(m)=0.0001 g; ^{*d*} T_a is the temperature of the soap bubble meter used for measurement of the gas flow; ^{*e*} Vapour pressure at temperature *T* calculated from the *m* and the residual vapour pressure at T=273 K calculated by an iteration;

Crystal		Relaxed unit c	cell parameters			Fixed unit cell	parameters	
H-bond	$D(D\cdots A),$	$D(\mathbf{H}^{\cdots}\mathbf{A}),$	∠D–H…A,	$E_{\rm int}$,	$D(\mathbf{D}\cdots\mathbf{A}),$	$D(\mathbf{H}^{\cdot\cdot\cdot}\mathbf{A}),$	∠D–H…A,	$E_{\rm int}$,
	Å	Å	0	kJ∙mol ⁻¹	Å	Å	0	kJ∙mol ⁻¹
$2 \text{AmPy } N_{\text{am}} - H \cdots N_{\text{pv}}$ (in plane)								
PBE	2.971	1.963	177.5	23.0	3.046	2.015	177.4	18.9
B3LYP	3.010	1.993	176.1	21.0	3.117	2.100	177.0	15.9
PBE0	3.003	1.985	176.4	21.5	3.086	2.068	177.2	17.3
HSE06	3.000	1.981	176.6	21.6	3.080	2.062	177.3	17.5
CAM-B3LYP	3.045	2.030	176.0	19.4	3.132	2.117	177.0	15.5
Exp.					3.071	2.171	174.6	
			2AmPy N _{am} -H·	$\cdot \cdot N_{nv}$ (out	of plane)			
PBE	3.122	2.191	151.0	13.3	3.317	2.367	154.7	8.4
B3LYP	3.129	2.220	149.1	12.9	3.332	2.394	154.1	8.2
PBE0	3.138	2.226	149.6	12.7	3.332	2.395	154.2	8.2
HSE06	3.145	2.229	150.2	12.6	3.336	2.399	154.2	8.1
CAM-B3LYP	3.173	2.271	148.1	11.6	3.355	2.428	152.6	7.7
Exp.					3.320	2.509	152.6	
1			3AmPy N _{am} -I	H···N _{nv} (in	plane)			
PBE	2.939	1.909	170.7	24.8	3.036	2.008	171.7	19.3
B3LYP	2.976	1.965	169.6	22.8	3.097	2.086	170.5	16.7
PBE0	2.982	1.971	169.3	22.5	3.097	2.086	170.4	16.8
HSE06	2.985	1.973	169.5	22.5	3.087	2.075	170.7	17.2
CAM-B3LYP	3.022	2.016	169.5	20.4	3.133	2.128	169.5	15.4
Exp	0.022	2.010	107.0		3.123	2.216	167.8	1011
			3AmPv NH·	··N (out	of plane)	2,210	10/10	
PBE	3 249	2 310	152 4	10 3	3 389	2 436	154.9	74
B3LYP	3 233	2.310	151.4	10.5	3 372	2.130	155.0	7.8
PBE0	3 223	2.310	152.3	11.1	3 364	2.127	155.0	7.0 8.0
HSE06	3 251	2 310	152.5	10.9	3 370	2.119	155.1	79
CAM-B3LYP	3 258	2.340	150.9	10.5	3 370	2.120	154.9	8.0
Exn	5.250	2.5 10	150.5	10.1	3.336	2.455	161.5	0.0
			4AmPv	N -H···N	0.000	2.160	10110	
PBE	2 885	1 855	169 0	28.2	2 959	1 930	170.5	23.3
B3L VP	2.005	1.025	167.2	25.1	3.028	2 017	169.9	19.7
PRF0	2.931	1.921	167.2	25.1	3.006	1 994	170.1	20.9
HSE06	2.923	1.906	168.3	25.0	2 997	1 983	170.2	20.9
CAM-B3LYP	2.910	1.966	166.8	23.1	3.053	2 047	169.3	18.6
Exp	2.907	1.900	100.0	23.1	2.983	2.061	167.2	10.0
P.			30HPv	$01 - H \cdots N$	21/00	2.001	107.2	
PRF	2 564	1 480	178 9	597	² 606	1 541	177 1	527
B3LVP	2.504	1.400	178.8	52.7	2.000	1.541	177.9	<i>44</i> 3
PRF0	2.012	1.562	179.6	55.9	2.007	1.619	177.7	48.0
HSE06	2.587	1.531	179.6	56.3	2.041	1.611	177.6	48.5
CAM B3I VP	2.504	1.545	178.8	50.5	2.030	1.673	178.2	40.5 12 0
Exp	2.028	1.010	1/0.0	50.1	2.085	1.675	178.2 178.0	42.9
L'Ap.			20UDy	01' UN	2.000	1.045	170.0	
PBF	2 577	1 505	175 0	560	^{ру} 2.611	1 551	176 1	51.6
B 3I VD	2.377	1.505	175 /	10.2	2.011	1.551	170.1	12 5
DBEU	2.020	1.005	175 5	52 G	2.075	1.000	1767	тэ.э 16 б
T DEU USENA	2.005	1.3/9	175.5	52.0	2.030	1.052	1766	40.0
CAM D2I VD	2.002	1.575	175.5	17 2	∠.040 2.601	1.025	170.0	4/.0 /1 0
CANI-DJLIP Evn	2.045	1.035	170.0	47.3	2.091	1.005	177.3	41.7
Dyb.					2.009	1.0/1	1/4.2	

Table S4. Metric and energetic parameters of selected hydrogen bonds in the studied crystals optimised using different functionals. The interaction energies are estimated from QTAIMC data according to eq. (15).

	Experiment	PBE	B3LYP	PBE0	HSE06	CAM-B3LYP
2AmPy	-					
<i>a</i> , Å	11.6923(11)	11.40108	11.33357	11.36300	11.37420	11.37580
b, Å	5.6638(5)	5.564180	5.542882	5.558577	5.563035	5.589152
c, Å	7.3786(6)	6.756848	6.696704	6.712705	6.753332	6.735131
β , °	95.611(3)	94.94098	93.96468	93.90913	94.33487	93.46222
$V, Å^3$	486.29(7)	427.0459	419.6844	423.0020	426.0952	427.4455
$(V_{\text{calc}} - V_{\text{exp}})/V_{\text{exp}}$		-0.12183	-0.13697	-0.13015	-0.12379	-0.12101
3AmPy						
<i>a</i> , Å	6.186(4)	6.106422	6.100415	6.092444	6.095841	6.120995
b, Å	15.298(6)	13.40003	13.26129	13.39804	13.47737	13.37835
c, Å	5.713(3)	5.559682	5.564347	5.543252	5.542358	5.603884
β , °	110.54(3)	109.9527	110.8129	110.3074	110.2332	111.0750
$V, Å^3$	506.271	427.6206	420.7778	424.3538	427.2397	428.2004
$(V_{\text{calc}}-V_{\text{exp}})/V_{\text{exp}}$		-0.15535	-0.16887	-0.1618	-0.1561	-0.15421
4AmPy						
<i>a</i> , Å	5.5138(4)	5.182291	5.222734	5.246575	5.231825	5.277404
b, Å	7.1866(5)	6.940303	6.816715	6.834400	6.894715	6.875070
c, Å	12.0459(4)	11.77596	11.66765	11.69457	11.72065	11.67469
<i>V</i> , Å ³	477.32(5)	423.5421	415.3903	419.3345	422.7864	423.5873
$(V_{\text{calc}} - V_{\text{exp}})/V_{\text{exp}}$		-0.11267	-0.12975	-0.12149	-0.11426	-0.11258
ЗОНРу						
<i>a</i> , Å	7.6672(11)	7.573161	7.514249	7.544383	7.563160	7.534602
b, Å	7.0148(8)	6.655495	6.568473	6.632293	6.646602	6.605560
c, Å	17.803(2)	16.72301	16.70496	16.68930	16.71203	16.78771
eta,\circ	98.628(3)	96.45126	97.03770	96.61034	96.59578	96.81045
<i>V</i> , Å ³	946.678	837.5547	818.2970	829.5234	834.5420	829.6332
$(V_{\text{calc}} - V_{\text{exp}})/V_{\text{exp}}$		-0.11527	-0.13561	-0.12375	-0.11845	-0.12364

Table S5. Experimental and calculated lattice parameters of studied pyridine derivatives after DFT-D3 optimisation using various functionals with pob-TZVP_rev2 basis set and D3(BJ,ABC) dispersion correction.

Table S6. Total electronic energies of crystals (E^{cryst}) and isolated molecules (E^{mol}), zero-point energies (ZPE), basis set superposition energy (BSSE) and thermal corrections (E_{therm}), pressure-volume term (pV), entropy corrections (TS), total enthalpies and free Gibbs energies of crystals and molecules (H^{cryst} , H^{mol} , G^{cryst} , G^{mol}), Cocrystal Formation Energies (E_{form}) and Cocrystal Formation Gibbs Energies (E_{form}) obtained from periodic DFT-D3 calculations with various functionals (fixed cell optimisation). The units are a.u. per unit cell and kJ·mol⁻¹.

Crystal	PBE	B3LYP	PBE0	HSE06	CAM-B3LYP
2AmPy crystal	$(\mathbf{Z}=4)$				
E ^{cryst} , a.u./cell	-1213.578002485210	-1214.390623339990	-1213.634187033930	-1213.604892425410	-1214.411114491930
ZPE, a.u./cell	0.418533068754	0.431609984371	0.433715574883	0.433314081684	0.436531434712
E _{therm} , a.u./cell	0.025757190966	0.025013316004	0.025175504939	0.025180962050	0.024860890144
<i>pV</i> , a.u./cell	0.000011301904	0.000011301904	0.000011301904	0.000011301904	0.000011301904
H ^{cryst} , a.u./cell	-1213.133700923590	-1213.933988737710	-1213.175284652200	-1213.146386079770	-1213.949710865170
TS, a.u./cell	0.051112314466	0.049618790715	0.050418435337	0.050397195181	0.049546289361
G ^{cryst} , a.u./cell	-1213.184813238050	-1213.983607528430	-1213.225703087540	-1213.196783274950	-1213.999257154520
2AmPy molecu	le				
E ^{mol} , a.u./cell	-303.338613457892	-303.540168786878	-303.355752810676	-303.348010639876	-303.549187439891
ZPE, a.u./cell	0.102904756209	0.105667272174	0.106539412523	0.106457659630	0.106944902807
Etherm, a.u./cell	0.005768606758	0.005611467906	0.005584421418	0.005588833340	0.005556811515
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-303.228995908988	-303.427945860861	-303.242684790798	-303.235019960969	-303.435741539632
TS, a.u./cell	0.034790402804	0.034521660009	0.034471610795	0.034478205517	0.034424413181
G ^{mol} , a.u./cell	-303.263786311792	-303.462467520870	-303.277156401593	-303.269498166486	-303.470165952813
BSSE, kJ·mol ⁻¹	-62.92729696	-63.29989831	-58.11331409	-58.06869644	-63.13069135
E_{latt} , kJ·mol ⁻¹	79.266245	81.76376613	75.536363	76.72868928	71.82848172
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	79.97688771	82.55010171	76.14523126	77.34555914	72.57136548
$G_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	22.18353056	24.48201712	18.73341762	19.90248954	14.71101435
3AmPy crystal	(Z = 2)				
E ^{cryst} , a.u./cell	-606.768829759173	-607.172736881514	-606.794690346048	-606.780326380005	-607.182847299632
ZPE, a.u./cell	0.207901561437	0.214352080036	0.215648543211	0.215419773579	0.216880998764
Etherm, a.u./cell	0.012008616947	0.011678026898	0.011683896824	0.011701041887	0.011580289475
<i>pV</i> , a.u./cell	0.000005883132	0.000005883132	0.000005883132	0.000005883132	0.000005883132
H ^{cryst} , a.u./cell	-606.548913697657	-606.946700891448	-606.567352022881	-606.553199681407	-606.954380128261
TS, a.u./cell	0.024479622690	0.023798271278	0.023872579403	0.024010151868	0.023584231747
G ^{cryst} , a.u./cell	-606.573393320346	-606.970499162726	-606.591224602285	-606.577209833274	-606.977964360008
3AmPy molecul	le				
E ^{mol} , a.u./cell	-303.329633092221	-303.530887059948	-303.345810276472	-303.338064231529	-303.539209944549
ZPE, a.u./cell	0.102578364964	0.105380721504	0.106218175025	0.106133246814	0.106674791175
Etherm, a.u./cell	0.005857244376	0.005701073851	0.005685017710	0.005688647813	0.005647433776
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-303.220253296944	-303.418861078656	-303.232962897800	-303.225298150965	-303.425943533661
TS, a.u./cell	0.035019493347	0.034770784168	0.034737204644	0.034741987230	0.034682167789
G ^{mol} , a.u./cell	-303.255272790291	-303.453631862824	-303.267700102444	-303.260040138195	-303.460625701450
BSSE, kJ·mol ⁻¹	-53.15330492	-52.66767682	-48.38148201	-48.33004665	-52.17794036
$E_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	87.07300025	88.28507974	82.70658231	84.31630056	80.27327592
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	89.15812055	90.39415642	84.76579785	86.36253975	82.36982539
$G_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	29.35006546	30.34464321	24.90199567	26.66677915	22.27199408
4AmPy crystal	$(\mathbf{Z}=4)$				
E ^{cryst} , a.u./cell	-1213.584282460410	-1214.396135278420	-1213.639171699820	-1213.609917445220	-1214.415924107290
ZPE, a.u./cell	0.418562725763	0.431620387279	0.433845266167	0.433475240619	0.436836089635
E _{therm} , a.u./cell	0.025655164712	0.025033241410	0.025105324822	0.025100038453	0.024786958416
<i>pV</i> , a.u./cell	0.000011093520	0.000011093520	0.000011093520	0.000011093520	0.000011093520
H ^{cryst} , a.u./cell	-1213.140053476420	-1213.939470556210	-1213.180210015310	-1213.151331072630	-1213.954289965720
TS, a.u./cell	0.049917635544	0.048715253149	0.049131797920	0.049135500225	0.048204449278
G ^{cryst} , a.u./cell	-1213.189971111960	-1213.988185809360	-1213.229341813230	-1213.200466572850	-1214.002494415000

4AmPy molecul	le				
E ^{mol} , a.u./cell	-303.333763558203	-303.535379763779	-303.350530663369	-303.342806873949	-303.544021145360
ZPE, a.u./cell	0.102862854104	0.105669434851	0.106516333099	0.106434752565	0.106943541172
E _{therm} , a.u./cell	0.005822618599	0.005657008795	0.005642823881	0.005647559681	0.005607547214
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-303.224133899563	-303.423109134196	-303.237427320452	-303.229780375766	-303.430525871037
TS, a.u./cell	0.034878722303	0.034600538904	0.034572901059	0.034580581247	0.034512950049
G ^{mol} , a.u./cell	-303.259012621867	-303.457709673100	-303.272000221511	-303.264360957013	-303.465038821086
BSSE, kJ·mol⁻¹	-65.84712633	-66.61617831	-61.3671133	-61.26226892	-66.44682054
$E_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	93.07236589	94.63781476	89.11940046	90.32997843	85.02982726
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	93.99192095	95.53077619	89.92780565	91.1542873	85.95458131
$G_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	35.18252357	36.66253559	31.40553778	32.6142852	26.98102635
30HPy crystal	$(\mathbf{Z}=4)$				
E ^{cryst} , a.u./cell	-2586.009038751420	-2587.679572094030	-2586.061797542000	-2586.009760138440	-2587.753946168480
ZPE, a.u./cell	0.731484818687	0.758326425219	0.769097769561	0.761795154989	0.768834442609
Etherm, a.u./cell	0.051211916071	0.050521618264	0.050408720283	0.050348558830	0.050094591754
<i>pV</i> , a.u./cell	0.000022001793	0.000022001793	0.000022001793	0.000022001793	0.000022001793
H ^{cryst} , a.u./cell	-2585.226320014870	-2586.870702048750	-2585.242269050360	-2585.197594422830	-2586.934995132320
TS, a.u./cell	0.107770671208	0.108603632771	0.108296500040	0.107448939098	0.107170437556
G ^{cryst} , a.u./cell	-2585.334090686070	-2586.979305681530	-2585.356930520710	-2585.305043361920	-2587.042165569880
3OHPy molecul	le 1				
E ^{mol} , a.u./cell	-323.189177005518	-323.398219359612	-323.199961555348	-323.192766732709	-323.410601525484
ZPE, a.u./cell	0.090295110639	0.092797041466	0.093623987831	0.093550273891	0.094031170653
E _{therm} , a.u./cell	0.005600642462	0.005470761547	0.005461481717	0.005461855949	0.005414362092
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-323.092337066480	-323.299007370662	-323.099931899863	-323.092810416932	-323.310211806802
<i>TS</i> , a.u./cell	0.034592690968	0.034383879925	0.034372760249	0.034371905743	0.034293784429
G ^{mol} , a.u./cell	-323.126929757448	-323.333391250587	-323.134304660112	-323.127182322675	-323.344505591230
BSSE, kJ/mol	-53.54224407	-54.41543336	-49.10072684	-48.89027834	-53.93182763
3OHPy molecul	le 2				
E ^{mol} , a.u./cell	-323.189173507302	-323.398217529504	-323.199959929466	-323.192765073390	-323.410599884735
ZPE, a.u./cell	0.090287820921	0.092830354790	0.093685442272	0.093608314755	0.094085502379
E _{therm} , a.u./cell	0.005587814621	0.005455774843	0.005425821534	0.005427730839	0.005394939683
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-323.092353685823	-323.298987213934	-323.099904479723	-323.092784841859	-323.310175256736
TS, a.u./cell	0.034560266141	0.034348066035	0.034289525074	0.034291875902	0.034246255091
G ^{mol} , a.u./cell	-323.126913951964	-323.333335279968	-323.134194004797	-323.127076717760	-323.344421511827
BSSE, kJ·mol ⁻¹	-51.41506384	-51.11993842	-47.0119693	-46.68198903	-50.57080496
$\boldsymbol{E}_{\text{latt}}, ext{kJ} \cdot ext{mol}^{-1}$	107.179185	104.1084653	97.08508367	101.3659331	96.34304949
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	107.5314608	104.3434518	97.30561859	101.60921	96.56428103
G _{latt} , kJ·mol ⁻¹	52.11990355	49.75794448	44.79966483	46.73422932	41.76034213

Table S7. Total electronic energies of crystals (E^{cryst}) and isolated molecules (E^{mol}), zero-point energies (ZPE), basis set superposition energy (BSSE) and thermal corrections (E_{therm}), pressure-volume term (pV), entropy corrections (TS), total enthalpies and free Gibbs energies of crystals and molecules (H^{cryst} , H^{mol} , G^{cryst} , G^{mol}), Cocrystal Formation Energies (E_{form}) and Cocrystal Formation Gibbs Energies (E_{form}) obtained from periodic DFT-D3 calculations with various functionals (relaxed cell optimisation). The units are a.u. per unit cell and kJ·mol⁻¹.

Crystal	PBE	B3LYP	PBE0	HSE06	CAM-B3LYP
2AmPy crystal	(Z = 4)				
E ^{cryst} , a.u./cell	-1213.591960598340	-1214.411288397490	-1213.650088949900	-1213.618749370070	-1214.427015350600
ZPE, a.u./cell	0.422590692207	0.437158134398	0.438160055566	0.437445854116	0.441454685099
E _{therm} , a.u./cell	0.023954944907	0.022958792170	0.023251830744	0.023380992006	0.022998332773
<i>pV</i> , a.u./cell	0.000009924993	0.000009753904	0.000009831009	0.000009902897	0.000009934280
H ^{cryst} , a.u./cell	-1213.145405036230	-1213.951161717020	-1213.188667232580	-1213.157912621050	-1213.962552398450
TS, a.u./cell	0.044098590593	0.041884683356	0.042844384157	0.043280344560	0.042386212463
G ^{cryst} , a.u./cell	-1213.189503626830	-1213.993046400380	-1213.231511616730	-1213.201192965610	-1214.004938610920
2AmPy molecu	le				
E ^{mol} , a.u./cell	-303.338615099433	-303.540171373807	-303.355754016091	-303.348011956610	-303.549188896905
ZPE, a.u./cell	0.102936469999	0.105720703607	0.106564271276	0.106482621000	0.106993320979
E _{therm} , a.u./cell	0.005763943775	0.005596599709	0.005581813306	0.005586372091	0.005542053934
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-303.228970499722	-303.427909884554	-303.242663745572	-303.234998777582	-303.435709336055
TS, a.u./cell	0.034778906906	0.034492516726	0.034464519096	0.034471808524	0.034394632663
G ^{mol} , a.u./cell	-303.263749406628	-303.462402401279	-303.277128264668	-303.269470586105	-303.470103968719
BSSE, kJ·mol ⁻¹	-80.13148422	-82.67393986	-75.84169486	-74.99659144	-80.52359422
E_{latt} , kJ·mol ⁻¹	68.63944634	72.44557696	65.39045814	66.2462332	61.76430301
H_{latt} , kJ·mol ⁻¹	70.52169942	74.54243025	67.25609592	68.03901466	63.69187450
G _{latt} , kJ·mol ⁻¹	8.154891741	11.47438663	4.89148368	5.941417542	1.210016656
3AmPy crystal	(Z = 2)				
E ^{cryst} , a.u./cell	-606.780063647358	-607.188409190144	-606.806691821298	-606.791193695554	-607.195262329967
ZPE, a.u./cell	0.210174157014	0.217529400486	0.218037505465	0.217644786356	0.219671701736
E _{therm} , a.u./cell	0.011005758608	0.010520125020	0.010657479452	0.010723967249	0.010542126701
<i>pV</i> , a.u./cell	0.000004969175	0.000004889657	0.000004931213	0.000004964749	0.000004975912
H ^{cryst} , a.u./cell	-606.558878762561	-606.960354774981	-606.577991905168	-606.562819977200	-606.965043525618
TS, a.u./cell	0.019945256257	0.018870980288	0.019319491072	0.019539023358	0.019092011443
G ^{cryst} , a.u./cell	-606.578824018817	-606.979225755269	-606.597311396240	-606.582359000559	-606.984135537062
3AmPy molecu	le				
E ^{mol} , a.u./cell	-303.329632632479	-303.530884871957	-303.345810868558	-303.338064653216	-303.539206490788
ZPE, a.u./cell	0.102557779017	0.105334284907	0.106207190656	0.106120338961	0.106611875531
E _{therm} , a.u./cell	0.005859863434	0.005714769286	0.005686877525	0.005690172359	0.005663228932
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937
H ^{mol} , a.u./cell	-303.220270804091	-303.418891631827	-303.232972614440	-303.225309955959	-303.425987200388
TS, a.u./cell	0.035022177567	0.034795507466	0.034738550357	0.034742503159	0.034711102148
G ^{mol} , a.u./cell	-303.255292981657	-303.453687139293	-303.267711164797	-303.260052459118	-303.460698302535
BSSE, kJ·mol ⁻¹	-76.50732129	-78.66923142	-71.66372684	-70.87160551	-76.0891615
$E_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	75.4300794	78.57014615	72.01276994	73.08492796	68.84027335
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	78.83977812	82.23652007	75.42554745	76.41903019	72.34233214
$G_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	13.07218607	15.65379459	9.581145397	10.85244106	6.271371474
4AmPy crystal	$(\mathbf{Z}=4)$				
E ^{cryst} , a.u./cell	-1213.596380088170	-1214.414254285930	-1213.652740257300	-1213.621725264390	-1214.428968114280
ZPE, a.u./cell	0.421057199181	0.436067447001	0.437190974860	0.436396487606	0.440380470215
E _{therm} , a.u./cell	0.024381782580	0.023391273699	0.023627418627	0.023768277036	0.023460076749
<i>pV</i> , a.u./cell	0.000009843560	0.000009654104	0.000009745771	0.000009825997	0.000009844612
H ^{cryst} , a.u./cell	-1213.150931262850	-1213.954785911130	-1213.191912118040	-1213.161550673750	-1213.965117722700
TS, a.u./cell	0.044896010982	0.042555150154	0.043443541584	0.043959740848	0.043096143678
G ^{cryst} , a.u./cell	-1213.195827273830	-1213.997341061280	-1213.235355659620	-1213.205510414600	-1214.008213866380

4AmPy molecule							
E ^{mol} , a.u./cell	-303.333763938616	-303.535380113211	-303.350531161577	-303.342807252941	-303.544021775543		
ZPE, a.u./cell	0.102842445841	0.105660653169	0.106490778519	0.106408939853	0.106939671843		
Etherm, a.u./cell	0.005825370907	0.005660227113	0.005647977923	0.005652209733	0.005607276078		
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937		
H ^{mol} , a.u./cell	-303.224151935931	-303.423115046992	-303.237448219198	-303.229801917418	-303.430530641685		
TS, a.u./cell	0.034885995813	0.034609142122	0.034584613407	0.034591244977	0.034513336803		
G ^{mol} , a.u./cell	-303.259037931745	-303.457724189113	-303.272032832605	-303.264393162395	-303.465043978489		
BSSE, kJ·mol⁻¹	-80.32927823	-83.40901714	-76.29994118	-75.41664085	-80.91519639		
E_{latt} , kJ·mol ⁻¹	84.83890375	86.79492692	80.82819336	81.93976399	76.78495522		
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	86.60232164	88.77502940	82.62107579	83.65124845	78.58074911		
$G_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	24.47775883	25.84086344	20.33442790	21.68600966	16.25321463		
3OHPy crystal	$(\mathbf{Z}=4)$						
E ^{cryst} , a.u./cell	-2586.036214989090	-2587.719905180010	-2586.092686861790	-2586.037539360290	-2587.787611872600		
ZPE, a.u./cell	0.736942534485	0.767167026879	0.769097769561	0.767636230107	0.776914732328		
E _{therm} , a.u./cell	0.048373883375	0.046872040352	0.047263699058	0.047409576362	0.046794508378		
<i>pV</i> , a.u./cell	0.000019465647	0.000019018078	0.000019278990	0.000019395629	0.000019281542		
H ^{cryst} , a.u./cell	-2585.250879105580	-2586.905847094700	-2585.276306114180	-2585.222474158190	-2586.963883350350		
TS, a.u./cell	0.094051959716	0.090593538257	0.092475781082	0.093018729223	0.091244415253		
G ^{cryst} , a.u./cell	-2585.344931065300	-2586.996440632960	-2585.368781895260	-2585.315492887420	-2587.055127765600		
3OHPy molecul	e 1						
E ^{mol} , a.u./cell	-323.189176457691	-323.398218242404	-323.199961354246	-323.192766598483	-323.410600237620		
ZPE, a.u./cell	0.090263437755	0.092736746023	0.093593774885	0.093521403962	0.093918622017		
E _{therm} , a.u./cell	0.005613233803	0.005513829886	0.005477507390	0.005476549141	0.005490988845		
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937		
H ^{mol} , a.u./cell	-323.092355600196	-323.299023480558	-323.099945886034	-323.092824459443	-323.310246440821		
TS, a.u./cell	0.034612854043	0.034475510545	0.034402214697	0.034398256535	0.034475700391		
G ^{mol} , a.u./cell	-323.126968454240	-323.333498991103	-323.134348100731	-323.127222715977	-323.344722141212		
BSSE, kJ·mol ⁻¹	-72.18422820	-75.43122672	-67.92086036	-67.08279341	-73.66351616		
3OHPy molecul	e 2						
E ^{mol} , a.u./cell	-323.189173468971	-323.398217277953	-323.199960162138	-323.192765153924	-323.410600541187		
ZPE, a.u./cell	0.090286575009	0.092823460517	0.093687658935	0.093609779635	0.094072168380		
E _{therm} , a.u./cell	0.005588559727	0.005455226992	0.005424875427	0.005426725771	0.005395395555		
<i>pV</i> , a.u./cell	0.000944185937	0.000944185937	0.000944185937	0.000944185937	0.000944185937		
H ^{mol} , a.u./cell	-323.092354148298	-323.298994404507	-323.099903441839	-323.092784462581	-323.310188791315		
TS, a.u./cell	0.034562048627	0.034346441763	0.034287714445	0.034289909944	0.034246766101		
G ^{mol} , a.u./cell	-323.126916196925	-323.333340846270	-323.134191156285	-323.127074372525	-323.344435557416		
BSSE, kJ·mol ⁻¹	-65.42830355	-67.91544185	-61.43818462	-60.71153007	-66.50657697		
$E_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	97.93687585	95.45185013	90.56260433	92.41882509	90.32017847		
$H_{\text{latt}}, \text{kJ} \cdot \text{mol}^{-1}$	99.23889825	96.94138049	91.8359852	93.64546367	91.72653909		
G_{latt} , kJ·mol ⁻¹	39.29622230	36.32702944	32.01267612	34.00265732	31.45639773		

Table S8. Lattice energies E_{latt} of studied compounds estimated using parametrised force field schemes PIXEL and CE-B3LYP. The numbers in brackets display the discrepancies between calculated E_{latt} and experimental sublimation enthalpy at 298.15 K. All units are kJ·mol⁻¹.

Method \ Crystal	2AmPy	3AmPy	4AmPy	3OHPy
PIXEL	91.3 (+14.6)	93.6 (+13.1)	104.4 (+17.3)	102.8 (+0.2)
CE-B3LYP	90.2 (+13.5)	79.7 (-0.8)	101.1 (+14.0)	121.6 (+21.0)

Method\Crystal		metion cale		<u>given m Kj</u>		$\frac{7001101a11a}{mPy}$		$\frac{y}{y}$ value.
PRE	fix cell	opt cell	fix cell	opt cell	fix cell	opt cell	fix cell	opt cell
$E_{\text{latt}}(0\text{K})$	53.9	81.9	50.5	79.9	58.3	88.0	84.0	110.8
$\Sigma E_{int}(N-H\cdots N)$	27.3 (50.7%)	36.3 (44.4%)	19.3 (38.3%)	24.8 (31.1%)	23.3 (40.0%)	28.2 (32.0%)	52.1 (62.0%)	58.3 (52.6%)
$\Sigma E_{int}^{mn}(N-H\cdots C)$	_	_	_	_	6.7 (11.5%)	10.3 (11.7%)	_	_
$\Sigma E_{int}(C-H\cdots X)$	3.0 (5.6%)	5.3 (6.4%)	12.8 (25.4%)	15.4 (19.2%)	16.1 (27.7%)	25.6 (29.1%)	15.2 (18.1%)	29.8 (26.9%)
$\Sigma E_{int}(C-H\cdots\pi)$	13.9 (25.7%)	24.9 (30.5%)	13.1 (25.9%)	32.8 (41%)	9.4 (16.1%)	13.9 (15.8%)	1.3 (1.6%)	2.3 (2.1%)
$\Sigma E_{int}(\pi \cdots \pi)$	1.4 (2.7%)	2.5 (3%)	_	_	_	3.2 (3.6%)	7.3 (8.7%)	12.3 (11.1%)
$\Sigma E_{int}(vdW)$	8.2 (15.3%)	12.9 (15.7%)	5.3 (10.5%)	6.9 (8.6%)	2.8 (4.7%)	6.9 (7.8%)	8.1 (9.6%)	8.1 (7.4%)
<u>B3LYP</u>	fix.cell	opt.cell	fix.cell	opt.cell	fix.cell	opt.cell	fix.cell	opt.cell
$\frac{E_{\text{latt}}(0\text{K})}{\Sigma E_{\text{c}}(\text{N}, \text{H}, \text{N})}$	51.0	82.2	50.4	80.5	54.6	88.1	73.5	116.5
ΣE_{int} (N-H···N)	24.1 (47.2%)	33.9 (41.2%)	16.7 (33.2%)	22.8 (28.3%)	19.7 (36%)	25.1 (28.5%)	43.9 (59.7%)	50.7 (43.5%)
ΣE_{int} (N-H···C)	_	—	—	—	6.7 (12.3%)	10.7 (12.1%)	—	_
$\Sigma E_{int}(C-H\cdots X)$	3.3 (6.4%)	6.1 (7.5%)	16.1 (32%)	16.2 (20.1%)	15.7 (28.8%)	21.4 (24.3%)	14.8 (20.1%)	38.6 (33.1%)
$\Sigma E_{int}(C-H\cdots\pi)$	13.6 (26.7%)	25.8 (31.4%)	12.7 (25.3%)	34.9 (43.4%)	10 (18.2%)	14.7 (16.7%)	1.5 (2.0%)	2.8 (2.4%)
$\Sigma E_{int}(\pi \cdots \pi)$	1.4 (2.8%)	2.6 (3.1%)	—	—	—	8.6 (9.7%)	5.6 (7.7%)	13.5 (11.6%)
$\Sigma E_{int}(vdW)$	8.6 (16.9%)	13.8 (16.7%)	4.8 (9.6%)	6.6 (8.2%)	2.6 (4.7%)	7.6 (8.7%)	7.7 (10.5%)	11.0 (9.4%)
<u>PBE0</u>	fix.cell	opt.cell	fix.cell	opt.cell	fix.cell	opt.cell	fix.cell	opt.cell
$\frac{E_{\text{latt}}(\text{UK})}{\Sigma E_{\text{o}}(\text{N}-\text{H}\cdots\text{N})}$	52.0	81.2	50.0	<u>/9.5</u>	56.1	84.5	/0.5	<u> </u>
$\sum_{int} (N-H \cdots C)$	25.5 (49%)	34.2 (42.1%)	24.8 (48.9%)	33.6 (42.2%)	20.9(37.3%)	25.8 (30.5%)	47.3 (61.8%)	54.5 (47.5%)
$\sum_{int} (\mathbf{R} - \mathbf{H} - \mathbf{C})$	-	-	-	-	6.8(12.2%)	10.5(12.5%)	-	-
$\Sigma E_{int}(C-H\cdots\pi)$	3.1(5.9%)	5.8(/.1%)	8.1(10.0%)	5.6(7.0%)	16.0(28.6%)	21.0(24.9%)	14./(19.2%)	34.0 (29.8%)
$\sum_{int} \sum_{n=1}^{\infty} (\pi \cdots \pi)$	13.8(20.0%)	25.8 (31.7%)	12.8 (25.4%)	33.8 (42.5%)	9.8 (17.5%)	14.5(1/.1%)	1.4 (1.8%)	2.3(2.2%)
$\sum E_{int} (x - x)$	1.4(2.6%)	2.5(3.0%)	-	-	-	8.1 (9.6%)	5.5(7.2%)	12.8(11.2%)
	$\frac{8.3(13.9\%)}{\text{fix cell}}$	13.0 (10.0%)	$\frac{4.9(9.7\%)}{\text{fix cell}}$	0.0 (8.2%)	$\frac{2.3(4.4\%)}{\text{fix cell}}$	4.3 (3.4%)	7.0 (10.0%)	10.0 (9.2%)
$\frac{\mathbf{HSE00}}{E_{1-\mu}(0\mathbf{K})}$	52.0	<u>80.0</u>	50.8	78.1	56.3	<u>83.2</u>	79.1	<u> </u>
ΣE_{int} (N-H···N)	25.6 (49.2%)	34.2 (42.7%)	17.2 (33.8%)	22.5 (28.8%)	21.4 (38%)	26.1 (31.4%)	47.8 (60.4%)	54.7 (48.2%)
ΣE_{int}^{int} (N-H···C)	-	_	_	_	6.7 (11.8%)	10.2 (12.2%)	_	-
$\Sigma E_{int}^{int}(C-H\cdots X)$	3.1 (5.9%)	5.6 (6.9%)	15.9 (31.2%)	16.2 (20.7%)	16.0 (28.5%)	25.4 (30.5%)	14.9 (18.9%)	33.5 (29.5%)
$\Sigma E_{int}^{int}(C-H\cdots\pi)$	13.8 (26.5%)	25 (31.3%)	12.8 (25.2%)	32.8 (42.1%)	9.7 (17.2%)	14.2 (17%)	1.4 (1.8%)	2.4 (2.1%)
$\Sigma E_{int}^{(m)}(\pi \cdots \pi)$	1.4 (2.6%)	2.4 (3.0%)	_	_	_	3.1 (3.7%)	7.2 (9.2%)	12.5 (11.0%)
$\Sigma E_{int}(vdW)$	8.2 (15.8%)	12.9 (16.1%)	5.0 (9.8%)	6.6 (8.4%)	2.5 (4.5%)	4.3 (5.2%)	7.7 (9.8%)	10.4 (9.2%)
CAM-B3LYP	fix.cell	opt.cell	fix.cell	opt.cell	fix.cell	opt.cell	fix.cell	opt.cell
$E_{\text{latt}}(0\text{K})$	50.5	77.0	49.2	78.7	53.8	86.7	72.2	112.3
$\Sigma E_{int}(N-H\cdots N)$	23.2 (46%)	31.0 (40.3%)	15.4 (31.3%)	20.4 (26.0%)	18.6 (34.7%)	23.1 (26.6%)	42.4 (58.7%)	48.7 (43.4%)
ΣE_{int} (N-H···C)	—	—	—	—	6.7 (12.5%)	10.0 (11.5%)	—	—
$\Sigma E_{\text{int}}(\text{C-H}\cdots\text{X})$	3.3 (6.5%)	5.9 (7.7%)	16.5 (33.5%)	15.6 (19.8%)	15.6 (29.0%)	24.4 (28.1%)	15.2 (21.0%)	37.7 (33.6%)
$\Sigma E_{\text{int}}(\text{C-H}\cdots\pi)$	13.7 (27.2%)	24.8 (32.2%)	12.6 (25.6%)	33.3 (42.3%)	10.3 (19.1%)	14.2 (16.4%)	1.5 (2.1%)	2.5 (2.2%)
$\Sigma E_{\text{int}}(\pi \cdots \pi)$	1.4 (2.8%)	2.4 (3.1%)	—	3.3 (4.2%)	—	8.1 (9.3%)	5.6 (7.7%)	13.0 (11.6%)
$\Sigma E_{int}(vdW)$	8.9 (17.6%)	12.9 (16.7%)	4.7 (9.6%)	6.1 (7.7%)	2.5 (4.6%)	7.0 (8.1%)	7.5 (10.4%)	10.4 (9.2%)

Table S9. Contributions into the crystal lattice energy from different kinds of non-covalent interactions in crystals of pyridine derivatives estimated by QTAIMC depending on the functional used for optimisation and wave function calculation and given in kJ·mol⁻¹ and % of total lattice energy value.

X = O, N

in princes, i fus, or composition of an interprint to an interprint to the composition of								
N	CAS	Name	ΔG_{sub}^{298}	ΔH_{sub}^{298}	T_{fus}	Ref		
			kJ·mol⁻¹	kJ·mol⁻¹	Κ			
1	99-92-3	4-aminoacetophenone	41.0	92.5	379.35	[1]		
2	150-13-0	4-aminobenzoic acid	52.5	118.0	460.45	[2]		
3	106-47-8	4-chloroaniline	25.5	80.5	343.65	[3]		
4	1452-77-3	2-pyridinecarboxamide	35.3	91.3	379.55	[4]		
5	98-92-0	Nicotinamide	49.3	111.7	402.65	[2]		
6	1453-82-3	Isonicotinamide	49.1	117.0	429.85	[2]		
7	99-09-2	3-nitroaniline	41.8	108.3	386.55	[5]		
8	108-99-6	3-methylpyridine	9.4	62.2	255.01	[6]		
9	591-27-5	3-aminophenol	41.8	105.4	394.95	[7]		
10	123-30-8	4-aminophenol	46.6	109.7	460.05	[7]		
11	95-54-5	1,2-diaminobenzene	32.3	85.5	375.25	[8]		
12	108-45-2	1,3-diaminobenzene	35.0	90.4	339.15	[8]		
13	106-50-3	1,4-diaminobenzene	37.5	92.2	414.25	[8]		
14	106-49-0	4-aminotoluene	20.7	76.2	316.60	[9]		
15	3676-85-5	4-aminophthalimide	72.3	142.4	567.15	[10]		
16	35975-00-9	5-amino-6-nitroquinoline	68.2	136.4	545.15	[11]		
17	580-17-6	3-aminoquinoline	42.4	103.1	364.65	[12]		
18	611-34-7	5-aminoquinoline	43.7	105.0	383.15	[12]		
19	580-15-4	6-aminoquinoline	43.8	105.7	387.15	[12]		
20	578-66-5	8-aminoquinoline	33.2	93.3	343.15	[12]		
21	60-09-3	4-aminoazobenzene	51.0	112.4	400.15	[13]		
22	101-80-4	4,4'-diaminodiphenyl oxide	63.6	132.4	465.45	[14]		
23	46492-08-4	benz[g]isoquinoline-5,10-dione	51.9	108.1	452.15	[15]		
24	117-79-3	2-aminoanthraquinone	78.8	153.6	577.65	[10]		
25	95-76-1	3,4-dichloro-Benzenamine	31.1	88.1	344.55	[3]		
26	2243-62-1	1,5-Naphthalenediamine	55.5	120.2	469.55	[16]		
27	2835-68-9	p-Aminobenzamide	61.7	131.2	455.55	[2]		
28	2196-13-6	4-Pyridinecarbothioamide	56.0	118.8	475.95	[17]		
29	5346-38-3	2-Pyridinecarbothioamide	38.3	87.3	407.05	[17]		

Table S10. Sublimation Gibbs energies, ΔG_{sub}^{298} , sublimation enthalpies, ΔH_{sub}^{298} , and fusion temperatures, T_{fus} , of compounds structurally related to aminopyridine isomers.

[1] A. Aihara, Bull. Chem. Soc. Jpn., 1960, 33, 1188–1194.

[2] T.V. Volkova et al., J. Therm. Anal. Calorim., 2016, 123, 841-849.

[3] S.P. Verevkin and C. Schick, Fluid Ph. Equilib., 2003, 211, 161–177.

[4] A.A. Zhabina et al., J. Chem. Thermodyn., 2016, 103, 69-75.

- [5] D. Ferro and V. Piacente, Thermochim. Acta, 1985, 90, 387-389.
- [6] E.R. Hopke and G.W. Sears, J. Chem. Phys., 1951, 19, 1345–1351.
- [7] A.R.R.P. Almeida et al., J. Chem. Thermodynam., 2019, 129, 130–137.

[8] A.F.L.O.M. Santos and M.A.V. Ribeiro da Silva, J. Phys. Chem. B, 2011, 115, 4939-4948.

[9] V.N. Emel'yanenko and S.P. Verevkin, J. Phys. Chem. A, 2005, 109, 3960–3966.

[10] R.M. Stephenson and S. Malanowski, *Handbook of the Thermodynamics of Organic Compounds*. Elsevier, New York, 1987.

[11] M.A.V. Ribeiro da Silva et al., J. Chem. Thermodyn., 1998, 30, 815-823.

[12] M.A.V. Ribeiro da Silva, et al., J. Chem. Thermodyn., 1993, 25, 579-590.

[13] T.G. Majury, Chem. Ind. (London), 1956, 349–350; data also published in T.G. Majury, J. Soc. Dyers Col., 1956, **72**, 41.

- [14] S.P. Verevkin et al., J. Chem. Thermodyn., 2020, 144, 106057.
- [15] V. Oja and E.M. Suuberg, J. Chem. Eng. Data, 1998, 43, 486–492.
- [16] S.P. Verevkin et al., J. Chem. Eng. Data, 2007, 52, 286-290.
- [17] S.V. Blokhina et al., Thermochim. Acta, 2015, 622, 97–102.

N	CAS	Name	ΔG_{cub}^{298}	ΔH_{wb}^{298}	T_{fus}	Ref
			kI·mol ⁻¹	k I-mol ⁻¹	K	
1	90-15-3	1-naphthol	35.3	91 2	368.15	[1]
2	135-19-3	2-naphthol	38.2	94 2	394.60	[1]
3	108-46-3	1 3-dihydroxybenzene	37.7	94 7	382 55	[2]
<u>л</u>	123_31_9	1 4-dihydroxybenzene	<i>4</i> 3 8	103.9	<i>44</i> 5 55	[2]
т 5	533_73_3	1 2 3-trihydroxybenzene	53 <u>4</u>	103.7	413 25	[2]
6	87_66_1	1,2,3-trihydroxybenzene	12 7	103.0	415.25	[3]
7	108_73_6	1.3.5_trihydroxybenzene	42.7 60 /	135.5	405.05	[3]
8	05 71 6	Mathylhydroguinone	30.0	101.0	300.65	[2]
0	2880 61 A	2.5 Dibydroxythionhenol	<i>39.</i> 0 <i>1</i> 3 5	101.9	399.05	[2]
10	615 67 8	2 Chloro 1 4 dihydroxybenzene	43.3	00 7	391.15	[2]
10	582 60 7	2 Promo 1 4 dihydroxybenzene	27 1	99.7	282 15	[2]
11	00 42 7	2-Biomo-1,4-uniyuroxybelizene	37.1	90.0	222 75	[∠] [4]
12	90-43-7	2-phenylphenol	52.2 46.2	00.3	333.73 442.15	[4] [4]
13	92-09-5	4-phenyiphenoi 2 2! dihydroxychinhonyl	40.5	109.8	443.13	[4] [4]
14	1806-29-7	2,2 - dinydroxybipnenyi	44.0	114.4	380./J	[4]
15	92-88-0	4,4 ⁻ -dinydroxybipnenyl	69.4 22.5	143.0	560.75 220.05	[4]
10	5/6-24-9		22.5	/6.9	330.05	[5]
1/ 10	120-83-2	2,4-dichlorophenol	21.6	/8.0	318.15	[3]
18	95-77-2	3,4-dichlorophenol	29.7	89.8	339.65	[5]
19	106-41-2	4-bromophenol	27.3	84.2	337.85	[6]
20	108-43-0	3-chlorophenol	22.7	76.9	305.85	[5]
21	106-48-9	4-chlorophenol	23.8	100.4	316.90	[5]
22	100-02-7	4-nitrophenol	41.7	100.4	386.75	[7]
23	98-92-0	Nicotinamide	49.3	111.7	402.65	[8]
24	108-95-2	phenol	19.1	68.7	314.04	[9]
25	108-99-6	3-methylpyridine	9.4	62.2	255.01	[10]
26	108-89-4	4-methylpyridine	4.3	62.7	276.82	[10]
27	591-27-5	3-aminophenol	41.8	105.4	394.95	[11]
28	123-30-8	4-aminophenol	46.6	109.7	460.05	[11]
29	123-08-0	4-hydroxybenzaldehyde	41.4	98.2	390.15	[12]
30	95-48-7	2-methylphenol	19.5	76.0	304.18	[9]
31	106-44-5	4-methylphenol	21.7	73.9	307.92	[9]
32	150-76-5	4-methoxyphenol	30.0	88.5	328.45	[13]
33	123-07-9	4-ethylphenol	24.6	80.3	318.15	[14]
34	526-75-0	2,3-dimethylphenol	25.4	84.0	345.69	[14]
35	95-65-8	3,4-dimethylphenol	27.0	85.7	338.23	[14]
36	7640-33-7	7-bromo-5-chloro-8-hydroxyquinoline	49.5	113.2	450.65	[15]
37	521-74-4	5,7-dibromo-8-hydroxyquinoline	53.1	117.3	469.15	[15]
38	130-26-7	5-chloro-7-iodo-8-hydroxyquinoline	52.2	114.8	451.65	[15]
39	773-76-2	5,7-dichloro-8-hydroxyquinoline	47.0	109.3	452.65	[15]
40	83-73-8	5,7-diiodo-8-hydroxyquinoline	61.8	126.8	483.15	[15]
41	130-16-5	5-chloro-8-hydroxyquinoline	37.3	98.7	403.15	[15]
42	13207-63-1	5-iodo-8-hydroxyquinoline	49.7	121.3	399.15	[16]
43	4008-48-4	5-nitro-8-hydroxyquinoline	49.3	114.1	453.15	[17]
44	611-36-9	4-hydroxyquinoline	68.6	135.1	474.15	[18]
45	148-24-3	8-hydroxyquinoline	30.1	89.5	348.15	[17]
46	571-60-8	1,4-naphthohydroquinone	56.7	119.0	449.65	[19]
47	826-81-3	2-methyl-8-hydroxyquinoline	31.2	90.4	346.95	[17]
48	98-54-4	4-tert-butylphenol	30.1	85.9	373.25	[20]

Table S11. Sublimation Gibbs energies, ΔG_{sub}^{298} , sublimation enthalpies, ΔH_{sub}^{298} , and fusion temperatures, T_{fus} , of compounds structurally related to 3-Hydroxypyridine.

49	66-71-7	1,10-phenanthroline	49.7	107.4	390.95	[21]
50	101-53-1	4-benzylphenol	41.6	97.1	358.25	[13]
51	81-60-7	1,4,5,8-tetrahydroxyanthraquinone	85.7	156.7	573.15	[22]
52	5315-79-7	1-hydroxypyrene	63.9	132.4	453.15	[23]
53	608-25-3	2-Methylresorcinol	36.3	99.2	390.05	[24]
54	496-73-1	4-Methylresorcinol	39.0	107.3	379.15	[24]
55	609-70-1	4-Hydroxynicotinic Acid	78.8	148.1	532.75	[25]
56	27828-71-3	5-Hydroxynicotinic Acid	80.6	149.8	571.45	[25]
57	230-07-9	4,7-Phenanthroline	50.9	118.4	445.50	[21]
58	371-41-5	4-Fluorophenol	19.9	74.1	320.45	[6]
59	90-01-7	2-Hydroxymethylphenol	34.3	99.5	357.15	[26]
60	540-38-5	4-Iodophenol	32.3	90.2	365.85	[6]
61	831-82-3	4-Phenoxyphenol	43.2	112.8	356.75	[27]
62	93-60-7	methyl nicotinate	22.3	80.1	312.65	[28]
63	114-33-0	N-methylnicotinamide	44.2	107.4	379.15	[29]
64	6972-69-6	N,N-dimethylnicotinamide	33.3	94.0	317.35	[29]
65	2417-10-9	2-hydroxy-diphenyl ether	36.5	92.3	375.35	[30]
66	89-00-9	Pyridine-2,3-dicarboxylic acid	55.1	128.7	456.05	[31]

[1] M. Colomina et al., J. Chem. Thermodyn., 1974, 6, 571-576.

[2] V.I. Smirnov et al., Zh. Fiz. Khim. (Russ.), 1991, 65, 267–269.

[3] S.P. Verevkin and C. Schick, *Thermochim. Acta*, 2004, 415, 35–42.

[4] S.P. Verevkin, J. Chem. Thermodyn., 1998, 30, 389–396.

[5] S.P. Verevkin et al., J. Chem. Eng. Data, 2007, 52, 499-510.

[6] A.R.R.P. Almeida and M.J.S. Monte, J. Chem. Thermodyn., 2013, 65, 150–158.

[7] A. Heintz et al., J. Phys. Chem. A, 2007, 111, 6552–6562.

[8] T.V. Volkova et al., J. Therm. Anal. Calorim., 2016, 123, 841-849.

[9] R.J.L. Andon et al., J. Chem. Soc., 1960, 5246–5255.

[10] E.R. Hopke and G.W. Sears, J. Chem. Phys., 1951, 19, 1345–1351.

[11] A.R.R.P. Almeida et al., J. Chem. Thermodyn., 2019, 129, 130–137.

[12] G.H. Parsons et al., J. Chem. Soc. B, 1971, 533–536.

[13] A. Aihara, Bull. Chem. Soc. Jpn., 1960, 33, 194–200.

[14] D.P. Biddiscombe et al., J. Chem. Soc., 1963, 5764–5768.

[15] M.A.V. Ribeiro Da Silva and M.J.S. Monte, J. Chem. Thermodyn., 1992, 24, 715–724.

[16] G.R. Horton and W.W. Wendlandt, J. Inorg. Nucl. Chem., 1963, 25, 241–245.

[17] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1989, 21, 159-166.

[18] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1990, 22, 609-616.

[19] C.G. DeKruif et al., J. Chem. Phys., 1981, 74, 5838–5841.

[20] S.P. Verevkin, J. Chem. Thermodyn., 1999, 31, 559-585.

[21] B. Brunetti et al., *Thermochim. Acta*, 2016, **636**, 71–84.

[22] H. Hoyer and W. Peperle, Z. Electrochem., 1958, 62, 61–66.

[23] V. Oja and E.M. Suuberg, J. Chem. Eng. Data, 1998, 43, 486–492.

[24] M.A.V. Ribeiro da Silva and A.I.M.C. Ferreira, J. Chem. Thermodyn., 2009, 41, 1096-1103.

[25] R.C. Santos et al., J. Phys. Chem. B, 2009, 113, 14291–14309.

[26] M.A.V. Ribeiro da Silva and A.I.M.C. Ferreira, J. Therm. Anal. Calorim., 2010, 100, 447-455.

[27] M.A.V. Ribeiro da Silva et al., J. Org. Chem., 2011, 76, 3754-3764.

[28] M.A.V. Ribeiro Da Silva et al., J. Chem. Eng. Data, 2007, 52, 580-585.

[29] A.R.R.P. Almeida et al., J. Chem. Thermodyn., 2015, 82, 108–115.

[30] S.P. Verevkin et al., J. Chem. Eng. Data, 2020, 65, 1108–1116.

[31] K.V. Drozd et al., J. Chem. Thermodyn., 2021, 155, 106369.

N	CAS	Name	ΔG^{298}	ΛH^{298}	T _c	Ref
			ly I mol-	k I mol-	- jus K	
			KJ∙MOI 1	KJ∙MOI 1	K	
1	4394-00-7	Niflumic acid	61.3	130.2	478.95	[1]
2	288-32-4	imidazole	31.7	83.1	362.82	[2]
3	1072-62-4	2-ethylimidazole	34.6	89.6	352.65	[3]
4	1452-77-3	Picolinamide	35.3	91.3	379.55	[4]
5	98-92-0	Nicotinamide	49.3	111.7	402.65	[5]
6	1453-82-3	Isonicotinamide	49.1	117.0	429.85	[5]
7	51-17-2	benzimidazole	47.2	102.2	443.25	[2]
8	27032-01-5	pyridinium dicyanomethylide	67.9	128.7	518.15	[6]
9	120-72-9	indole	27.5	75.0	325.65	[7]
10	7640-33-7	7-bromo-5-chloro-8-hydroxyquinoline	49.5	113.2	450.65	[8]
11	521-74-4	5,7-dibromo-8-hydroxyquinoline	53.1	117.3	469.15	[8]
12	130-26-7	5-chloro-7-iodo-8-hydroxyquinoline	52.2	114.8	451.65	[8]
13	773-76-2	5,7-dichloro-8-hydroxyquinoline	47.0	109.3	452.65	[8]
14	83-73-8	5,7-diiodo-8-hydroxyquinoline	61.8	126.8	483.15	[8]
15	130-16-5	5-chloro-8-hydroxyquinoline	37.3	98.7	403.15	[8]
16	13207-63-1	5-iodo-8-hydroxyquinoline	49.7	121.3	399.15	[9]
17	607-34-1	5-nitroquinoline	36.2	94.2	347.15	[10]
18	613-50-3	6-nitroquinoline	43.8	103.8	426.65	[10]
19	607-35-2	8-nitroquinoline	44.8	106.7	363.15	[10]
20	4008-48-4	5-nitro-8-hydroxyquinoline	49.3	114.1	453.15	[11]
21	148-24-3	8-hydroxyquinoline	30.1	89.5	348.15	[11]
22	35975-00-9	5-amino-6-nitroquinoline	68.2	136.4	545.15	[12]
23	611-34-7	5-aminoquinoline	43.7	105.0	383.15	[13]
24	580-15-4	6-aminoquinoline	43.8	105.7	387.15	[13]
25	578-66-5	8-aminoquinoline	33.2	93.3	343.15	[13]
26	83-34-1	3-methylindole	30.4	83.3	370.65	[7]
27	1436-43-7	2-cyanoquinoline	37.3	94.4	368.15	[14]
28	3138-86-1	2,3-bis(bromomethyl)quinoxaline	49.3	114.0	423.64	[15]
29	881-07-2	8-nitroquinaldine	47.4	111.0	413.15	[10]
30	826-81-3	2-methyl-8-hydroxyquinoline	31.2	90.4	346.95	[11]
31	2379-55-7	2,3-dimethylquinoxaline	31.3	87.8	379.49	[15]
32	66-71-7	1,10-phenanthroline	49.7	107.4	390.95	[16]
33	46492-08-4	benz[g]isoquinoline-5,10-dione	51.9	108.1	452.15	[17]
34	229-87-8	Phenanthridine	42.2	100.1	379.74	[17]
35	612-96-4	2-phenylquinoline	44.3	105.4	359.15	[18]
36	670-96-2	2-phenyl-1H-Imidazole	50.1	113.6	418.15	[19]
37	244-63-3	9H-pyrido[3,4-b]indole	59.3	116.3	480.15	[20]
38	15827-72-2	2,5-Diphenylpyridine	56.8	123.7	444.30	[21]
39	92-07-9	3,5-Diphenylpyridine	56.1	129.3	409.25	[21]
40	609-71-2	2-Hydroxynicotinic Acid	71.6	128.3	534.30	[22]
41	230-07-9	4,7-Phenanthroline	50.9	118.4	445.50	[16].
42	230-46-6	1,7-Phenanthroline	42.8	114.2	351.75	[16]
43	2459_07-6	methyl picolinate	24.0	81.8	289.25	[23]
44	93-60-7	methyl nicotinate	22.3	80.1	312.65	[24]
45	114-33-0	N-methylnicotinamide	44.2	107.4	379.15	[24]
46	6972-69-6	N,N-dimethylnicotinamide	33.3	94.0	317.35	[24]
47	54-85-3	Isoniazid	49.5	101.0	446.25	[25]

Table S12. Sublimation Gibbs energies, ΔG_{sub}^{298} , sublimation enthalpies, ΔH_{sub}^{298} , and fusion temperatures, T_{fus} , of compounds structurally related to 2-(1H-Imidazol-2-yl)pyridine.

48	2196-13-6	4-Pyridinecarbothioamide	56.0	118.8	475.95	[25]
49	5346-38-3	2-Pyridinecarbothioamide	38.3	87.3	407.05	[25]
50	not	N-(2-chloro-3-pyridinyl)-benzenesulfonamide	56.7	115.0	426.25	[5]
51	499-83-2	Dipicolinic acid	68.6	134.3	528.05	[26]
52	36947-68-9	2-isopropylimidazole	36.2	92.2	403.15	[27]
53	89-00-9	Quinolinic acid	55.1	128.7	456.05	[26]

- [1] A.O. Surov et al., Cryst. Growth Des., 2009, 9, 3265–3272.
- [2] P. Jimenez et al., J. Chem. Thermodyn., 1987, 19, 985–992.
- [3] P. Jimenez et al., J. Chem. Thermodyn., 1992, 24, 1145–1149.
- [4] A.A. Zhabina et al., J. Chem. Thermodyn., 2016, 103, 69–75.
- [5] T.V. Volkova et al., J. Therm. Anal. Calorim., 2016, 123, 841-849.
- [6] R.H. Boyd et al., J. Phys. Chem., 1967, 71, 2187–2191.
- [7] R.M. Stephenson and S. Malanowski, *Handbook of the Thermodynamics of Organic Compounds*, Elsevier, New York, 1987.
- [8] M.A.V. Ribeiro Da Silva and M.J.S. Monte, J. Chem. Thermodyn., 1992, 24, 715–724.
- [9] G.R. Horton and W.W. Wendlandt, J. Inorg. Nucl. Chem., 1963, 25, 241-245.
- [10] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1997, 29, 295-303.
- [11] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1989, 21, 159-166.
- [12] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1998, 30, 815-823.
- [13] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1993, 25, 579-590.
- [14] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1995, 27, 1187-1196.
- [15] M.J.S. Monte and D.M. Hillesheim, J. Chem. Eng. Data, 2000, 45, 1088–1092.
- [16] B. Brunetti et al., Thermochim. Acta, 2016, 636, 71-84.
- [17] V. Oja and E.M. Suuberg, J. Chem. Eng. Data, 1998, 43, 486–492.
- [18] M.A.V. Ribeiro Da Silva et al., J. Chem. Thermodyn., 1997, 29, 1129-1136.
- [19] L. Infantes et al., J. Phys. Chem. A, 2006, 110, 2535–2544.
- [20] J.L. Goldfarb and E.M. Suuberg, J. Chem. Thermodyn., 2010, 42, 781-786.
- [21] M. Rocha et al., J. Phys. Chem. A, 2009, 113, 11015–11027.
- [22] R.C. Santos et al., J. Phys. Chem. B, 2009, 113, 14291–14309.
- [23] M.A.V. Ribeiro da Silva et al., J. Chem. Eng. Data, 2007, 52, 580-585.
- [24] A.R.R.P. Almeida et al., J. Chem. Thermodyn., 2015, 82, 108–115.
- [25] S.V. Blokhina et al., J. Therm. Anal. Calorim., 2015, 120, 1053-1060.
- [26] K.V. Drozd et al., J. Chem. Thermodyn., 2021, 155, 106369.
- [27] F. Herrera-Castro and L.A. Torres, J. Mol. Liq., 2019, 284, 232-240.

Table S13. Coefficients of the correlation equation (31) for the clusters including the considered compound as a one from the components of the two-component crystal.

N⁰	CF1	CF1:CF2	А	В	Ra	$\sigma^{ m b}$	n ^c	$T_{fus}/^{\circ}\mathrm{C}$
1	Caffeine	1:1	132±21	0.673 ± 0.045	0.9512	16.00	26	236.1
	Caffeine	2:1	223±30	0.445 ± 0.063	0.9623	10.20	6	236.1
2	Carbamazepine	1:1	245±15	0.415 ± 0.032	0.8990	11.50	42	164.0
	Carbamazepine	2:1	275±61	0.369 ± 0.142	0.6544	18.30	11	164.0
3	Isoniazid	1:1	195±23	0.495 ± 0.052	0.8782	14.50	29	173.1
	Isoniazid	2:1	271±30	0.316 ± 0.063	0.8582	12.80	11	173.1
4	Isonicotinamide	1:1	243±26	0.420 ± 0.059	0.7533	21.90	41	156.7
	Isonicotinamide	2:1	265±23	0.400 ± 0.051	0.8919	14.30	18	156.7
	Isonicotinamide		1:2 220±27	0.513 ± 0.064	0.9704	7.36	6	156.7
5	Nicotinamide	1:1	178±15	0.514 ± 0.033	0.8936	15.60	63	129.5
	Nicotinamide		1:2 -73±71	1.086 ± 0.151	0.9381	16.80	9	129.5
	Nicotinamide	2:1	268±28	0.322 ± 0.058	0.8907	14.30	10	129.5

^a Pair correlation coefficient;

^b Standard deviation;

^c A number of points in the cluster;