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treatment and application to photoelectron recoil.
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Introduction

We treat the combined effect of spin-orbit interaction and molec-
ular field in the product basis of orbital angular momentum pro-
jection m and spin angular momentum projection u, which con-
stitutes an atomic-problem-in-a-molecule approximation for pho-
toemission. Because the molecular field mixes S 2p orbital states
in the molecular frame of reference, we derive the splitting and
the formed eigenstates i
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in this coordinate system, indicated by notion mol. We use # =r/r
and r = |r| for brevity. Next, using atomic units and following
Schmidtl, we derive the orientation-dependent differential pho-
toemission cross section for solid angle element dQ in the direc-
tion of the wave vector of the detected electron k
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where o is the photon energy and o the fine structure constant.
In the experiment, the polarization e of the X-ray beam is parallel
to k. We use this direction for the z-axis of the laboratory frame of
reference and transform the states y™! to this coordinate system
for calculations. In equation spin projection u of the detected
electron is summed over for spin-insensitive detection. Differen-
tial cross section depends on the molecular orientation, char-
acterized by rotation R, which transforms the laboratory frame of
reference into the molecular one. In model using the atomic ba-
sis, the obtained coefficients c,(,l,)u suffice to define the molecular-
orientation-dependence of the cross section for state i together
with the Wigner matrix DU (R).
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Eigenstates in the molecular frame

Whereas the spin-orbit operator for a 2p electron is the same in
all frames of reference
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the molecular field operator ﬁﬁg depends on the system and its
frame of reference given by R. For S 2p of the CS, molecule we
use
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In the above, ¢ and « are the creation and annihilation operators
in the molecular frame. Parameters £ and y are empirical coef-
ficients for the interaction strength. The matrix presentation of
these operators for CS, read in the (m,u) basis, ordered as (-1,-
1/2), (-1,+1/2), (0,-1/2), (0,+1/2), (1,-1/2), (1,+1/2)
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For y > 0, the latter operator shifts the m = +1 components up in
energy by v and the m = 0 down in energy by ¥.

Finding eigenvectors and eigenvalues of the effective interac-
tion Hamiltonian matrix H™! = Hm"l +Hm" results in eigenener-
gies and respective eigenstates (coefficients c,,,L) in the molecular
frame. By fitting the spin-orbit splitting for SF¢ with y =0, we ob-
tained & = 0.806 eV, which we consider a constant in terms of
chemical environment. For CS, further fitting with this & value
fixed resulted y=0.102 eV.

We checked the results of this semiempirical method with those
of Kosugi and co-corkers? for the OCS molecule with the 2ps,
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splitting of 0.145 eV. We obtained y=0.117 €V by fitting, and eval-
uated the square of the respective nonzero expension coefficient
cou- These o-character values of 0.426 (states labeled 2pi, 1.15,),
0.574 (states labeled 2ps, .1),) and O (states labeled 2ps) +3)
match well with those of Kosugi et al. who obtained 0.433, 0.567
and 0, respectively?. For the pure spin-orbit-coupled case these
numbers are !/3, 2/3 and 0, respectively.

Cross section as a function of molecular orientation

An orbital or a spin state in the molecular frame can be presented
as a linear combination of states in the laboratory frame using
the appropriate Wigner D) matrix for rotation R, which trans-
forms the laboratory frame basis vectors to those of the molecular
frame'l. In the direct product basis this transformation follows
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In particular, for a spin state
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and for the spherical harmonics of the p orbitals
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We evaluate the transition matrix elements in the laboratory
frame, in which the polarization vector is oriented along the z-
axis. This choice yields a convenient form e-r=Z-r=r, =z =
i/ Y1 )r. In this particular experiment, electron detection
takes also place in the direction of the z-axis to yield the wave-
function for the emitted electron'l
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where k = kZ (k = |k|) is the wave vector with kinetic energy
€ = k?/2, and the phase shift A; originates from the shape of the
potential.

The transition operator and electron detection in the experi-
ment are spin-independent which makes each transition matrix
element decompose to a spatial part and a spin part
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where T, is used for the spatial part. We drop ¥ in the notation for
laboratory-frame spin ket and carry out the summation over the
two possible spin projections u in (2)) to describe the cross section
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in a spin-insensitive experiment. With the prefactor C; = 4% ak®
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Previous considerations yield spatial transition matrix element

<wk, o)

Z i~le ‘A’/R* r)2p(r) 3dr

T

lq m'
x / ve (#)YO(#)Y (#)df
GI
an!
)
x D,/ (R).

In this equation it is necessary that m’ = ¢ and [ = 0,2 for the
Gaunt integral qum, to be nonzero. Moreover, only ¢ =0 gives a
nonzero Y/(z). Thus
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where the dependence on rotation R is contained by the single
Wigner matrix element Déirz (R). The summation over / gives an
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energy-dependent factor, marked here C,, that accounts for both
s-waves and d-waves but is independent of R, m, u and i. We
note that the initial state splitting is negligible compared to &,
and therefore it is reasonable to use the same partial-wave radial
functions for each transition.

Based on these calculations, the R-dependent differential cross
section in this particular experimental geometry reads

do,
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Furthermore, owing to the aforementioned independencies of C,,
the probability of electron detection from one-electron state i of a
molecule oriented by R is proportional to

of'(R) = Y| Y DS (R)cli . @
u m

This relative orientational function measures the projection of the
initial state i on the ¥(£) in laboratory frame of reference.
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