Supporting Information

Cross-over from pyrene to acene optical and electronic properties, a theoretical investigation of a series of pyrene derivatives fused with N-, S, and O-containing heterocycles

Hachem Araji,^a Maria Nakhoul,^b Elio Challita,^c Nour Barmo,^d and Brigitte Wex^{*e}

^a Department of Internal Medicine, Staten Island University Hospital/Northwell Health, Staten Island, New York, USA

^b Dana-Farber Cancer Institute, Department of Informatics and Analytics, Boston MA, USA

^c Wyss Institute for Biologically Inspired Engineering; School of Engineering and Applied Sciences; Harvard University, Boston, MA, USA

^d Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon

*,e Lebanese American University, Department of Natural Sciences, Byblos, Lebanon

Table of Contents

Figure S1. Cyclic voltammogram of 2 in tetra- ⁿ butylammonium hexafluorophosphate	(0.1 M)
in dichloromethane containing ferrocene (Fc/Fc ⁺)	29

Table S2. Optimized geometries of 1a-d as assessed at the tuned ωB97X-D/cc-pvtz level of Table S3. Optimized geometries of 1e, PY, 2, and TC as assessed at the tuned @B97X-D/cc-
Table S4. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition
 dipole moments, electronic configurations and populations of 1a as computed using time-Table S5. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of **1b** as computed using time-
Table S6. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition
 dipole moments, electronic configurations and populations of **1c** as computed using timedependent DFT (TD-DFT) at the ωB97X-D/cc-pVTC level of theory......7 Table S7. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of **1d** and **1e** as computed using Table S8. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of PY, 2, and TC as computed **Table S 9.** Pairs of Natural Transition orbitals (isovalue surface 0.02 a.u.) for $S_0 \rightarrow S_1$ and **Table S 10.** Pairs of Natural Transition orbitals (isovalue surface 0.02 a.u.) for $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions at the $\omega B97X - D^3/cc - pVTZ^4$ level of theory for 1d, 1e, and PY...... 11 **Table S 11.** Pairs of Natural Transition orbitals (isovalue surface 0.02 a.u.) for $S_0 \rightarrow S_1$ and **Table S12.** Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1a** in its neutral and anionic state as computed at **Table S13.** Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1b** in its neutral and anionic state as computed at **Table S14.** Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1c** in its neutral and anionic state as computed at **Table S15.** Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1d** in its neutral and anionic state as computed at

Table S16. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 1e in its neutral and anionic state as computed at
ω-tuned ωB97X-D/cc-pVTZ level of theory. Values are unscaled
Table S17. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of PY in its neutral and anionic state as computed at
ω-tuned ωB97X-D/cc-pVTZ level of theory. Values are unscaled
Table S18. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 2 in its neutral and anionic state as computed at
ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled Values are unscaled 19
Table S19. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of TC in its neutral and anionic state as computed at
ω-tuned $ω$ B97X-D/cc-pVTZ level of theory. Values are unscaled20
Table S20. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 1a in its neutral and cationic state as computed at
$\omega\text{-tuned}\;\omega\text{B97X-D/cc-pVTZ}$ level of theory. Values are unscaled
Table S21. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 1b in its neutral and cationic state as computed at
$\omega\text{-tuned}\;\omega\text{B97X-D/cc-pVTZ}$ level of theory. Values are unscaled
Table S22. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 1c in its neutral and cationic state as computed at
ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled
Table S23. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 1d in its neutral and cationic state as computed at
ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled
Table S24. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 1e in its neutral and cationic state as computed at
ω-tuned $ω$ B97X-D/cc-pVTZ level of theory. Values are unscaled25
Table S25. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of PY in its neutral and cationic state as computed at
ω-tuned $ω$ B97X-D/cc-pVTZ level of theory. Values are unscaled
Table S26. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of 2 in its neutral and cationic state as computed at
ω-tuned ωB97X-D/cc-pVTZ level of theory. Values are unscaled
Table S27. Frequency, ω (cm ⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV),
for the totally symmetric vibrations of TC in its neutral and cationic state as computed at
ω-tuned ωB97X-D/cc-pVTZ level of theory. Values are unscaled

Table S1. Value of Ω to predict ordering of states in TD-DFT computations in pyrene.

 $\Omega = \frac{4(a+c+d)/12}{(4b+e+2f)/7} \, (1)^1$

	а	b	С	d	е	f							
Pyrene, DFT-optimized at tuned wB97X-D/cc-pvtz level of theory (this study)													
Length (Å) 1.37981 1.3875 1.40731 1.43628 1.42274 1.33894													
	Calculated according to equation 1: Ω =1.0211												
			Pyrene ²										
Length (Å)	Length (Å) 1.386 1.400 1.422 1.436 1.428 1.344												
	Calc	ulated accord	ling to equation	on 1: Ω =1.01	9212								

a,c,d= transversal bonds to central bond e; b,f= paralell bonds to central bond e.

Table S2. Optimized geometries of **1a-d** as assessed at the tuned ω B97X-D/cc-pvtz level of theory in the ground state.

Table S3. Optimized geometries of **1e**, **PY**, **2**, and **TC** as assessed at the tuned ω B97X-D/cc-pvtz level of theory in the ground state.

Table S4. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition
dipole moments, electronic configurations and populations of 1a as computed using time-
dependent DFT (TD-DFT) at the ω B97X-D/cc-pVTC level of theory.

	Tr	ansit	ion	Evert	λ_{vert}	f	μ_{ge}	Electro	nic c	onfig.	%CB
								H-1	\rightarrow	LUMO	25
	S_0	\rightarrow	S_1	3.81	326	0.1531	1.6419	номо	\rightarrow	LUMO	52
								номо	\uparrow	L+1	14
								H-1	\rightarrow	LUMO	32
	S_0	\rightarrow	S_2	3.86	321	0.1168	1.235	номо	\rightarrow	LUMO	36
								номо	\rightarrow	L+1	24
								H-3	\rightarrow	LUMO	20
	S_0	\rightarrow	S₃	4.43	280	0.0019	0.0176	H-2	\rightarrow	LUMO	16
								номо	\rightarrow	L+2	54
	ς.		ς.	1 62	268	0 5/07	1 0 1 0 7	H-1	\rightarrow	LUMO	33
	30	\rightarrow	34	4.05	208	0.5497	4.0407	номо	\rightarrow	L+1	50
1a								H-2	\rightarrow	LUMO	41
	$S_0 \rightarrow$	\rightarrow	S_5	4.65	267	0.074	0.6493	H-1	\rightarrow	L+2	11
								номо	\rightarrow	L+2	28
	S.		S.	/ 81	258	0.001/	0.012	H-3	\rightarrow	LUMO	67
	J 0	\rightarrow	J 6	4.01	250	0.0014	0.012	H-2	\rightarrow	LUMO	15
	S_0	\rightarrow	S ₇	5.06	245	0.8306	6.7032	H-1	\rightarrow	L+1	76
	S.		Sa	5 09	244	0 167	1 3398	H-2	\rightarrow	L+1	18
	J 0	\rightarrow	28	5.05	244	0.107	1.5558	H-1	\rightarrow	L+2	43
								H-3	\rightarrow	L+1	20
	S_0	\rightarrow	S ₉	5.20	239	0.0028	0.0221	H-1	\rightarrow	L+2	10
S								номо	\rightarrow	L+3	48
								H-4	\rightarrow	LUMO	38
	Sa	_	S 10	5 29	234	0 0111	0.0854	H-3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17
	J 0	\rightarrow	S ₁₀	5.29	234	0.0111	0.0004	H-2	H-2 \rightarrow LUMO $H-2$ \rightarrow L+2 $H-1$ \rightarrow LUMO $HOMO$ \rightarrow L+1 $H-2$ \rightarrow LUMO $H-1$ \rightarrow L+2 $HOMO$ \rightarrow L+2 $HOMO$ \rightarrow L+2 $H-3$ \rightarrow LUMO $H-1$ \rightarrow L+1 $H-2$ \rightarrow LUMO $H-1$ \rightarrow L+1 $H-2$ \rightarrow L+1 $H-1$ \rightarrow L+2 $H-3$ \rightarrow L+1 $H-1$ \rightarrow L+2 $HOMO$ \rightarrow L+3 $H-4$ \rightarrow LUMO $H-3$ \rightarrow L+2 $H-2$ \rightarrow L+2 $HOMO$ \rightarrow L+2 $HOMO$ \rightarrow L+4		14
								НОМО	\rightarrow	L+4	14

 E_{vert} = gas phase vertical transition energy (e.V.); λ_{vert} = wavelength of vertical transition (nm); f = oscillator strength; μ_{ge} = transition dipole moment (Debye); %CB = percent of major contributions (\geq 10%); H = HOMO; L = LUMO.

Table S5. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of **1b** as computed using time-dependent DFT (TD-DFT) at the ω B97X-D/cc-pVTC level of theory.

	Transition		ion	Evert	λ_{vert}	f	μ_{ge}	Electro	nic c	onfig.	%CB
	ç		ç	2 00	220	0.004	0.0422	H-1	\rightarrow	LUMO	40
	30	\rightarrow	51	5.00	520	0.004	0.0422	номо	\rightarrow	L+1	57
	c		د د	2 00	210	0 2025	2 0620	H-1	\rightarrow	L+1	10
	30	\rightarrow	32	5.90	210	0.2925	3.0039	номо	\rightarrow	LUMO	88
	S.	、	S .	1 5 1	272	0.0004	0 0020	H-2	\rightarrow	LUMO	79
	30	\rightarrow	33	4.54	275	0.0004	0.0039	номо	\rightarrow	L+2	10
	ς.	、	c .	4 75	261	0 4722	1 06 1 2	H-1	\rightarrow	LUMO	53
16	30	\rightarrow	34	4.75	201	0.4752	4.0045	номо	\rightarrow	L+1	38
	S ₀	\rightarrow	S 5	4.80	259	0.0381	0.3239	НОМО	\rightarrow	L+2	68
	$S_0 \rightarrow$	、	S .	E 10	220	0 1 4 6 0	1 15/2	H-2	\rightarrow	L+1	53
10		\rightarrow	36	5.19	239	0.1409	1.1345	H-1	\rightarrow	L+2	20
	S_0	\rightarrow	S ₇	5.20	238	1.1709	9.1828	H-1	\rightarrow	L+1	73
						0.033		H-3	\rightarrow	LUMO	19
	S_0	\rightarrow	S_8	5.25	236		0.2564	H-3	\rightarrow L+1		11
								номо	\rightarrow	L+3	43
	S.		S.	5 5 7	225	0.0007	0.0040	H-3	\rightarrow	LUMO	66
_	30	\rightarrow	- 39	5.52	225	0.0007	0.0049	НОМО	\rightarrow	L+3	16
								H-2	\rightarrow	L+2	18
	S_0	\rightarrow	→ S ₁₀	5.64	220	0.022	0.159	H-1	\rightarrow	L+2	45
								номо	\rightarrow	L+3	19

 E_{vert} = gas phase vertical transition energy (e.V.); λ_{vert} = wavelength of vertical transition (nm); f = oscillator strength; μ_{ge} = transition dipole moment (Debye); %CB = percent of major contributions (\geq 10%); H = HOMO; L = LUMO.

Table S6. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of **1c** as computed using time-dependent DFT (TD-DFT) at the ω B97X-D/cc-pVTC level of theory.

	Tra	ansit	ion	Evert	λ_{vert}	f	μ_{ge}	Electro	nic c	onfig.	%CB
	c		ç	4.04	207	0.0055		H-1	\rightarrow	LUMO	38
	30	\rightarrow	51	4.04	307	0.0055	0.0557	номо	\rightarrow	L+1	56
	ç		د د	1 1 2	200	0.2547	3 E 1 0 0	H-1	\uparrow	L+1	14
	30	\rightarrow	32	4.15	500	0.2547	2.5100	номо	\rightarrow	LUMO	81
	c		ç	1 76	200	0.0011	0.0001	H-3	\rightarrow	LUMO	10
	30	\rightarrow	33	4.70	200	0.0011	0.0091	H-2	\rightarrow	LUMO	70
	ς.		ς.	5 01	247	0 7008	5 7078	H-1	\rightarrow	LUMO	57
	30	-	34	5.01	247	0.7008	5./0/8	номо	\rightarrow	L+1	39
								H-2	\rightarrow	L+1	17
	ς.		S.,	5 16	240	0.0086	0.0679	H-1	\rightarrow	L+2	11
	30	\rightarrow	35	5.10	240	0.0080		номо	\rightarrow	L+2	43
1c								номо	\rightarrow	L+5	11
	$S_0 \rightarrow$		S .	5 28	225	1 426	11 017	H-1	\rightarrow	L+1	79
щ		36	J.20	235	1.420	11.017	номо	\rightarrow	LUMO	15	
								H-3	\rightarrow	L+1	26
	S_0	\rightarrow	\rightarrow S ₇	5.36	231	0.002	0.0149	номо	\rightarrow	L+2	27
								номо	\rightarrow	L+5	29
	S.		S.	5 12	220	0.0040	0 0272	H-3	\rightarrow	LUMO	59
	30	-	38	J.42	229	0.0049	0.0372	H-2	\rightarrow	L+1	19
								H-3	\rightarrow	LUMO	14
	S.		S.	5 63	220	0 0030	0.0286	H-2	\rightarrow	LUMO	14
_	30	\rightarrow	39	5.05	220	0.0039	0.0280	H-2	\rightarrow	L+1	37
								номо	\rightarrow	L+2	13
				5.94				H-2	\rightarrow	L+1	10
	S_0	\rightarrow	S ₁₀		209	0.0243	0.1674	H-1	\rightarrow	L+2	55
								номо	\rightarrow	L+5	17

 E_{vert} = gas phase vertical transition energy (e.V.); λ_{vert} = wavelength of vertical transition (nm); f = oscillator strength; μ_{ge} = transition dipole moment (Debye); %CB = percent of major contributions (\geq 10%); H = HOMO; L = LUMO.

СР	Transition		ion	Evert	λ_{vert}	f	μ_{ge}	Electro	nic c	onfig.	%CB
	S ₀	\rightarrow	S_1	3.84	323	0.2527	2.6877	НОМО	\rightarrow	LUMO	85
	c		2	2 07	220	0.0122	0 1 2 0 2	H-1	\rightarrow	LUMO	52
	30	\rightarrow	32	5.67	520	0.0152	0.1395	номо	\rightarrow	L+2	39
	S.		ς.	1 60	264	0 5 8 9 /	5 101/	H-1	\rightarrow	LUMO	42
1d	30	-	34	4.09	204	0.3884	5.1214	номо	\rightarrow	L+2	56
10	S.	、	S -	5 1 3	242	0 7506	5 9766	H-1	\rightarrow	L+2	61
	30	-	3/	5.15	242	0.7500	3.9700	номо	\rightarrow	L+3	21
								H-2	\rightarrow	26	
	S_0	\rightarrow	S ₉	5.29	234	0.5107	3.9382	H-1	\rightarrow	L+2	25
								номо	\rightarrow	L+3	39
-	S.		s.	3 03	215	0.0124	0.1291 H-: HOM	H-1	\rightarrow	LUMO	59
	J 0	\rightarrow	J 1	5.55	313	0.0124		НОМО	\rightarrow	L+2	36
	So →	、	S.	4 10	302	0 0003	0 9888	H-1	\rightarrow	L+2	21
	J 0	~	32	4.10	302	0.0555	0.5888	номо	\rightarrow	LUMO	73
	S.	、	S _	A 77	260	0 01 01	7 85/	H-1	\rightarrow	LUMO	37
	J 0	~	35	4.77	200	0.9101	7.854	НОМО	\rightarrow	L+2	58
								H-3	\rightarrow	L+1	11
1e	S.	、	S.	1 95	250	0 6/85	5 3/28	H-1	\rightarrow	$ \rightarrow LUMO \rightarrow L+2 \rightarrow L+2 \rightarrow LUMO \rightarrow LUMO \rightarrow L+2 \rightarrow L+1 \rightarrow L+2 \rightarrow L+2 $	
	J 0	~	38	4.55	250	0.0405	5.5420	НОМО	\rightarrow	LUMO	14
								номо	\rightarrow	L+4	14
								H-3	\rightarrow	L+1	16
								H-2	\rightarrow	L+3	10
	S_0	\rightarrow	S ₉	4.97	250	0.4958	4.0738	H-1	\rightarrow	L+2	28
		,	- 2					НОМО	\rightarrow	LUMO	10
								НОМО	\rightarrow	L+4	20

Table S7. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of **1d** and **1e** as computed using time-dependent DFT (TD-DFT) at the ω B97X-D/cc-pVTC level of theory.

 E_{vert} = gas phase vertical transition energy (e.V.); λ_{vert} = wavelength of vertical transition (nm); f = oscillator strength; μ_{ge} = transition dipole moment (Debye); %CB = percent of major contributions (\geq 10%); H = HOMO; L = LUMO.

СР	Tra	ansiti	ion	Evert	λ_{vert}	f	μ_{ge}	Electro	onic d	config.	%CB
	c		c	4.24	202	0.0002	0.0021	H-1	\rightarrow	LUMO	44
	S 0	\rightarrow	51	4.24	293	0.0003	0.0031	номо	\rightarrow	L+1	53
	c		2	4 22	707	0 2247	2 0654	H-1	\rightarrow	L+1	13
DV	30	\rightarrow	32	4.52	207	0.5247	5.0054	номо	\rightarrow	LUMO	87
PT	c		۰ ۲	5 5 7	225	0 5 2 7 0	2 0024	H-1	\rightarrow	LUMO	54
	30	\rightarrow	34	5.52	225	0.3279	5.9024	номо	\rightarrow	L+1	46
	c		c	F 06	200	1 200	0 2010	H-1	\rightarrow	L+1	80
	30	\rightarrow	36	5.90	208	1.209	0.2019	НОМО	\rightarrow	LUMO	14
	s.		c.	2 01	217	0.0042	0 0 1 1 9	H-1	\rightarrow	LUMO	56
	30	\rightarrow	31	5.91	517	0.0045	0.0446	НОМО	\rightarrow	L+1	42
2	S ₀	\rightarrow	S ₂	3.92	316	0.3776	3.9274	НОМО	\rightarrow	LUMO	90
	s.		c .	1 20	252	0 200	2 560	H-1	\rightarrow	LUMO	41
	30	\rightarrow	34	4.09	233	0.508	2.309	номо	\rightarrow	L+1	56
	S ₀	\rightarrow	S ₇	5.46	227	1.6238	12.1455	H-1	\rightarrow	L+1	86
	S ₀	\rightarrow	S_1	2.82	440	0.0701	1.0157	номо	\rightarrow	LUMO	99
	c		c	רד כ	222	0.0025	0 0200	H-1	\rightarrow	LUMO	52
	30	\rightarrow	32	5.72	555	0.0055	0.0388	номо	\rightarrow	L+1	45
	s.		c _	4.07	250	ססדס ר	22 6509	H-1	\rightarrow	LUMO	45
тс	30	\rightarrow	35	4.97	230	2.0700	23.0398	НОМО	\rightarrow	L+1	53
								H-3	\rightarrow	LUMO	32
	S ₀	\rightarrow	S_7	5.40	230	0.0123	0.0927	H-2	\rightarrow	L+2	22
								номо	\rightarrow	L+3	44
	S ₀	、	S .	5 / 5	227	0 0003	0.0021	H-3	\rightarrow	LUMO	53
		\rightarrow	38	5.45	227	0.0003	0.0021	номо	\rightarrow	L+3	41

Table S8. Gas Phase Vertical transition energies, wavelengths, oscillator strength, transition dipole moments, electronic configurations and populations of **PY**, **2**, and **TC** as computed using time-dependent DFT (TD-DFT) at the ωB97X-D/cc-pVTC level of theory.

 E_{vert} = gas phase vertical transition energy (e.V.); λ_{vert} = wavelength of vertical transition (nm); f = oscillator strength; μ_{ge} = transition dipole moment (Debye); %CB = percent of major contributions (\geq 10%); H = HOMO; L = LUMO.

Table S 9. Pairs of Natural Transition orbitals (isovalue surface 0.02 a.u.) for $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions at the $\omega B97X \cdot D^3/cc \cdot pVTZ^4$ level of theory for **1a**-c.

H = Highest occupied transition orbital (HOTO); L = lowest unoccupied transition orbital (LUTO).

Table S 10. Pairs of Natural Transition orbitals (isovalue surface 0.02 a.u.) for $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions at the $\omega B97X - D^3/cc - pVTZ^4$ level of theory for **1d**, **1e**, and **PY**.

H = Highest occupied transition orbital (HOTO); L = lowest unoccupied transition orbital (LUTO).

Table S 11. Pairs of Natural Transition orbitals (isovalue surface 0.02 a.u.) for $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions at the $\omega B97X - D^3/cc - pVTZ^4$ level of theory for **2** and **TC**.

H = Highest occupied transition orbital (HOTO); L = lowest unoccupied transition orbital (LUTO).

Table S12. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1a** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

		1	а			
Neut	ral			Anio	on	
ω	S	λ_{rel}	ω	S	λ_{rel}	
cm ⁻¹		meV	cm ⁻¹		meV	
210	0.694	50.6	197	0.003	0	
220	-0.004	0	209	-0.692	50.1	
266	-0.09	1.1	256	-0.003	0	
299	0.233	8.1	295	0.001	0	
305	-0.008	0	298	-0.238	8.5	
375	-0.105	2	373	-0.124	2.8	
394	-0.315	19.6	393	-0.309	18.7	
493	-0.213	11.1	489	-0.036	0.3	
494	0.114	3.2	492	0.237	13.8	
620	-0.2	12.4	602	-0.001	0	
623	0.003	0	603	0.237	17	
646	0.069	1.5	621	0.003	0	
648	-0.446	64.4	640	-0.003	0	
655	-0.041	0.6	645	-0.428	59.1	
690	0.072	1.8	669	0	0	
699	0	0	687	0.074	1.9	
744	-0.256	24.3	720	-0.002	0	
765	0	0	735	0.271	26.9	
810	0.171	11.8	773	0	0	
850	0.118	5.9	796	0	0	
872	0	0	807	-0.162	10.6	
 908	0	0	832	-0.087	3.2	
 949	-0.123	7.2	945	-0.211	20.9	
960	0.376	68	953	0.314	46.8	
1052	0.052	1.4	1049	0.064	2.1	
1077	-0.096	5	1058	-0.011	0.1	
 1080	0.014	0.1	1068	0.095	4.9	
1159	-0.068	2.7	1148	-0.037	0.8	
1239	0.051	1.6	1237	0.036	0.8	
1259	0.068	2.9	1239	0.088	4.8	
1265	-0.122	9.5	1263	-0.056	2	
 1279	-0.109	7.6	1272	-0.206	26.9	
1320	-0.271	48.4	1289	-0.111	7.9	
1322	-0.118	9.2	1293	-0.319	65.7	
1333	-0.41	111.7	1299	-0.101	6.6	
 1342	-0.039	1	1334	-0.171	19.4	
 1308	0.05	0.0	1347	0.07	5.5	
1404	0.007	0	13/5	0.045	1.4	
1407	0.002	25.2	1404	0.131	00.0	
1439	-0.221	0/ /	1404	-0.339	0.8	
 1445	-0.302	10.7	1425	-0.031	28.1	
1/120	-0.001	10.7	1/12/	_0.136	11 2	
1520	0.001	2 /	1527	0.120	2 0	
1527	-0 107	2.4 2.7	1527	-0.07	3.0	
1557	0.107	0.7	1541	0.009	13.7	
 1599	-0.094	7 1	1567	-0 037	1 1	
 1643	0.045	17	1583	0.007	0.2	
1680	-0.64	343.6	1652	-0.681	382.9	
3044	-0.027	1.1	3033	-0.028	1.2	
3116	0.007	0.1	3101	0.029	1.3	
 3117	-0.035	1.9	3115	-0.001	0	
		-			-	

Table S13. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1b** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

		1	b			
Ne	utral			Ar	nion	
ω	S	λ_{rel}	ω	S	λ_{rel}	
cm ⁻¹		meV	cm ⁻¹		meV	
136	-0.127	1.1	136	-0.123	0	
164	-0.002	0	166	0	32.4	
187	0.001	0	190	0.001	32.1	
210	0.403	17.1	210	0.555	0	
211	0.669	47.3	211	0.551	0	
268	-0.095	1.2	260	-0.003	0	
279	0.024	0.1	267	0.076	8.1	
297	0.238	8.4	278	0.016	0.1	
326	-0.088	1.3	325	-0.059	0.1	
349	-0.008	0	342	-0.02	2.8	
355	0.126	2.8	356	0.126	1.2	
389	0.004	0	387	0.001	18.7	
423	-0.306	19.8	419	-0.298	0	
479	-0.035	0.3	4/4	-0.014	16	
498	0.253	12.9	497	0.254	0	
651	-0.462	0 60 6	620	-0.002	12	
681	-0.40Z	0.50	672	0.002	0 4 ۹	
709	-0 115	47	695	-0.001	۰+.۶ 0	
813	-0 191	14.8	764	0.002	0	
866	0.005	0	798	0.001	10.9	
871	0	0	811	0.013	2.7	
898	0.345	53.6	846	0	0	
918	0	0	858	-0.002	45.3	
924	-0.001	0	891	-0.319	3	
1018	0	0	988	-0.005	19.6	
1050	-0.074	2.9	1034	-0.195	8	
1066	-0.187	18.6	1055	-0.004	5	
 1090	-0.022	0.3	1069	-0.002	7	
 1092	0.093	4.7	1070	0.097	0.1	
 1108	0.122	8.3	1101	0.112	1.3	
 1156	-0.09	4.6	1144	-0.048	0.1	
 1237	0.01	0.1	1235	0.003	2.5	
 1241	-0.041	1.1	1235	-0.035	43.2	
1285	-0.039	1	1248	-0.064	13.8	
1287	-0.043	0.9	1277	-0.147	79.1	
 1326	-0.476	150.2	1205	-0.068	0.8	
1320	0.055	2	1312	0.000	0.0	
1358	-0.06	2.5	1314	-0.036	0	
1365	0.011	0.1	1339	0.035	14.6	
1391	-0.151	15.8	1355	-0.007	6.9	
1402	0.343	82.2	1384	0.145	8.8	
1406	-0.065	3	1390	-0.1	0.1	
1407	0.161	18.1	1397	0.01	12.3	
1408	0.047	1.6	1398	0.011	73.1	
1439	0.003	0	1408	0.132	4	
1440	0.047	1.6	1410	0.322	3.7	
1442	0.026	0.5	1426	0.075	1.3	
1450	0.263	50.2	1428	0.072	5.7	
1464	0.104	7.9	1432	0.043	0.6	
1510	0.033	0.8	1495	0.005	1.3	
1566	0.016	0.2	1562	0.01	3.7	
1559	0.037	1.1	1570	0.024	12.6	
1622	-0.062	5	15/8	-0.069	24	
1649	-0.088	5.ت 0	1505	-0.126	2.4	
1651	0.007	1 २	1600	0.055	486.2	
1704	-0 742	468.9	1690	-0 759	-00.2	
3038	0.007	0.1	3023	0.021	1.5	
3043	0.03	1.3	3032	0.031	0	
3110	-0.006	0	3093	-0.001	1.5	
3116	-0.036	2	3113	0	0	

Table S14. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1c** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

		1	.c				
Neut	tral			Anio	Anion		
ω	S	λ_{rel}	ω	S	λ_{rel}		
cm ⁻¹		meV	cm ⁻¹	l i	meV	1	
 213	0.816	70.9	195	0.001	0		
215	-0.07	0.5	212	-0.811	69 9		
300	0.254	9.7	270	0.048	0.3		
330	0.026	0.1	298	0.253	9.5		
356	0.134	3.2	336	0.001	0		
361	-0.056	0.6	356	-0.108	2.1		
383	-0.063	0.8	361	-0.119	2.6		
424	-0.148	4.7	393	0	0		
453	-0.003	0	419	-0.149	4.7		
503	0.245	15 1	502	0.244			
655	-0.442	63.8	630	-0.001	0		
660	0.003	0	654	0.448	65.6		
822	-0.201	16.6	752	0	0		
884	0	0	820	-0.134	7.4		
885	0	0	822	0.147	8.9		
908	-0.300	43.4	864	0	0		
928	0	0	902	-0.277	34 7		
938	-0.118	65	921	-0.002	0		
940	0.110	0.5	920	0.145	9.8		
1057	-0.027	04	1046	-0.06	19		
1079	-0.145	11 4	1066	-0.134	95		
1090	0.036	0.7	1069	0.079	34		
1151	-0.143	3.7 11 7	1141	-0.173	17.2		
1167	-0.087	44	1155	-0.046	12		
1252	0	0	1247	-0.048	15		
1284	0 020	05	1262	0.040	1.5		
1290	-0.033	0.7	1281	-0.453	131.6		
1303	0.127	10 5	1296	0.176	20.1		
1329	0.067	3	1297	0.004	0		
1332	0.536	191 2	1302	0.232	35.1		
1371	0.034	0.8	1328	0.067	3		
1383	-0.012	0.1	1346	-0.014	0.1		
1391	0.08	4.4	1375	0.005	0		
1412	0.122	10.5	1392	0.034	0.8		
1413	0.007	0	1397	0.081	4.6		
1413	-0.146	15.1	1399	-0.073	3.7		
1420	-0.394	110.2	1405	-0.019	0.3		
1445	-0.062	2.7	1418	-0.039	1.1		
1450	-0.185	24.8	1424	-0.426	129.3		
1486	0.029	0.6	1440	0.102	7.6		
1490	-0.058	2.5	1444	-0.099	7.1		
1492	-0.001	0	1463	-0.171	21.4		
1496	-0.242	43.9	1493	0	0		
1502	0.075	4.2	1494	0	0		
1521	-0.002	0	1509	-0.039	1.2		
1557	0.039	1.2	1532	0.017	0.2		
1567	-0.059	2.7	1562	-0.013	0.1		
1579	0.005	0	1570	0.057	2.6		
1629	0.005	0	1601	0.075	4.5		
1673	0.017	0.2	1623	0.159	20.4		
1719	-0.801	552	1700	-0.789	528.8		
3056	0.025	1	3045	0.029	1 २		
3179	0.025	<u>,</u>	3112	0.029	1.3		
3129	0.024	0.9 1 R	3125	0.05	1.4 0		
3730	0.023	1.5	3747	0.03	1.7		
3,30	0.023	· · ·	3, 4,	0.05			

Table S15. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1d** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

1d								
	Neut	ral		Anion				
	ω	S	λ_{rel}	ω	S	λ_{rel}		
	cm ⁻¹		meV	cm⁻¹		meV		
	123	-0.184	2.1	124	-0.19	2.2		
	208	0.703	51.5	208	0.698	50.8		
	349	0	0	352	0.153	4.1		
	350	-0.14	3.4	357	0	0		
	394	0.211	8.8	391	0.214	9		
	472	-0.114	3.1	453	0	0		
	494	0.241	14.3	469	0.1	2.3		
	495	0	0	492	-0.24	14.2		
	624	0.211	13.9	608	0.249	18.8		
	651	0.477	73.9	632	0	0		
	653	0	0	649	0.444	64.1		
	693	-0.153	8.1	689	-0.178	10.9		
	747	0.209	16.3	729	0	0		
	759	0	0	738	-0.208	15.9		
	813	0.187	14.3	784	0	0		
	849	0.003	0	812	0.179	13		
	888	-0.104	4.8	843	0	0		
	941	0	0	881	0.071	2.2		
	966	-0.319	49.2	955	-0.309	45.5		
	1053	-0.044	1	1050	-0.05	1.3		
	1091	0.082	3.7	1080	0.103	5.8		
	1158	0.099	5.6	1149	0.051	1.5		
	1237	0	0	1227	0.042	1.1		
	1264	0	0	1251	-0.098	6		
	1271	-0.169	18.1	1267	0	0		
	1279	-0.045	1.3	1271	-0.147	13.7		
	1319	0.185	22.5	1294	0.355	81.8		
	1332	0.435	126	1301	0.127	10.4		
	1341	0	0	1328	0.079	4.2		
	1382	-0.068	3.2	1354	-0.0/6	3.9		
	1420	-0.06	2.6	1400	0	0		
	1440	0	0	1407	0.447	140.4		
	1440	-0.208	31.3	1425	0	0		
	1445	0.39	110.2	1431	0	0		
	1491	0.041	1 2	1484	-0.0/4	4.1		
	1503	_0.041	1.Z	1490	0.001	0		
	1503	-0.051	۲ ۲ ۸	1505	0	0		
	1513	-0.043	1.4	1505		1.0		
	1531	0	U 6 1	1500	0.05	1.9		
	1521	-0.09	0.1	1509	ט סדח ח	U 4 7		
	1520	0 160	0 22 6	1523	0.078	4./		
	1640	0.055	22.0	1504	0.142	15.7		
	1691	0.032	2/1 2	1652	0.089	2.ט ס כקב		
	2011	0.057	J+1.2 1 5	2031	0.072	375.8		
	2117	0.031	1.J 2 D	2101	0.034	1.7		
	211/	0.057	۷.۷	2101	0.055	1.9		

		1	le				
Neut	tral		Anion				
ω	S	λ_{rel}	ω	S	λ_{rel}		
cm ⁻¹		meV	cm ⁻¹		meV		
210	0.707	52.5	210	0.7	51.4		
262	0.156	3.2	262	0.145	2.7		
289	0.212	6.5	289	0.232	7.8		
327	-0.132	2.8	328	-0.12	2.4		
357	0.12	2.6	357	0.127	2.9		
488	-0.252	15.5	489	-0.242	14.4		
637	0.335	35.9	624	0	0		
 639	0.084	2.3	624	0.036	0.4		
 642	0	0	638	-0.335	35.8		
 679	-0.27	24.8	674	-0.288	28		
 813	-0.184	13.8	794	0	0		
 879	0.023	0.2	812	0.18	13.1		
 904	-0.215	20.9	840	0	0		
 928	0	0	899	-0.184	15.2		
 1049	0	0	1047	-0.279	40.8		
 1056	0	0	1049	-0.242	30.8		
 1063	-0.373	74.2	1055	0	0		
 1093	0.071	2.7	1071	0.035	0.7		
 1120	-0.005	0	1103	-0.054	1.6		
 1168	0.065	2.4	1158	0.112	7.3		
 1214	0.148	13.3	1193	0.011	0.1		
 1224	0.035	0.7	1204	0.077	3.6		
 1273	-0.36	82.4	1259	-0.124	9.7		
 1303	-0.021	0.3	1275	-0.415	109.7		
 1311	-0.459	138.1	1290	-0.281	50.8		
 1322	0.061	2.5	1293	0.127	10.5		
 1349	0.131	11.6	1334	0.003	0		
 1365	0	0	1344	-0.263	46.7		
 1379	0.418	120.6	1372	0.122	10.2		
 1388	0.051	1.8	1372	0.002	0		
 1389	0	0	1396	-0.267	49.6		
 1407	0	0	1400	0.327	75		
 1476	0.222	36.5	1453	0.043	1.4		
 1528	0.041	1.3	1520	0	0		
 1531	0	0	1526	0.084	5.4		
 1549	0.11	9.3	1529	0.135	13.8		
 1581	0	0	1539	0.058	2.6		
 1637	-0.052	2.2	1543	0	0		
 1648	0.128	13.5	1603	0 000	0		
 16/6	0.092	/.1	1645	0.202	33.6		
 16/9	0.582	284	1646	0	0		
 16/9	0	0	1650	0.582	2/9.8		
 3043	-0.032	1.5	3033	-0.033	1./		
 3114	U	0	3100	-0.035	1.9		
 3116	0.041	2.6	3113	0	0		

Table S16. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1e** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

РҮ										
	Neut	ral		Anion						
	ω	S	λ_{rel}	ω	S	λ_{rel}				
	cm⁻¹		meV	cm⁻¹		meV				
	422	-0.932	183.3	419	-0.925	179.4				
	615	-0.306	28.8	614	-0.349	37.4				
	835	0.475	94.1	762	0	0				
	901	0	0	834	-0.438	80				
	1125	0.092	4.7	1114	0.104	6.1				
	1201	-0.246	36.4	1175	-0.342	68.8				
	1294	-0.801	415.3	1255	-0.001	0				
	1295	0.139	12.6	1275	0	0				
	1297	0	0	1278	0.595	226.2				
	1390	0.101	7.1	1354	0.001	0				
	1415	0	0	1385	0.426	126				
	1488	0.586	255.4	1425	0.578	237.9				
	1667	-0.149	18.6	1601	-0.161	20.8				
	1763	0.776	531.2	1722	0.779	522.4				
	3219	0.001	0	3179	0.041	2.6				
	3221	0.035	1.9	3182	0	0				
	3239	0	0	3205	0.029	1.4				
	3248	-0.037	2.3	3218	-0.029	1.3				

Table S17. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **PY** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

			2			
Neu	tral		Anion			
ω	S	λ_{rel}	ω	S	λ_{rel}	
cm ⁻¹		meV	cm ⁻¹		meV	
184	0.247	5.6	188	0.295	8.2	
216	-0.815	71.7	217	-0.795	68.5	
320	-0.254	10.4	320	-0.271	11.7	
468	-0.336	26.5	467	-0.315	23.2	
487	-0.073	1.3	482	-0.071	1.2	
665	-0.51	86.6	664	-0.518	89	
822	-0.161	10.6	774	0	0	
919	0	0	822	0.144	8.5	
939	-0.323	49	866	0	0	
952	0.125	7.4	938	0.269	34	
969	0	0	949	-0.151	10.8	
1145	0.008	0	1135	0.112	7.1	
1147	-0.011	0.1	1160	-0.122	8.6	
1173	0	0	1168	0.28	45.8	
1187	0.285	48.3	1181	0	0	
1261	0.301	57.1	1256	0.128	10.3	
1296	-0.076	3.8	1274	-0.217	30.1	
1321	0	0	1305	0.42	114.9	
1329	-0.59	231	1306	0	0	
1378	-0.066	3	1364	-0.048	1.6	
1401	0.018	0.2	1371	0.347	82.5	
1403	0	0	1384	0.061	2.6	
1420	0.028	0.6	1404	0.061	2.6	
1439	-0.033	0.8	1413	-0.429	130.2	
1470	-0.424	132.5	1428	0	0	
1488	0	0	1428	-0.043	1.3	
1635	-0.138	15.6	1585	-0.098	7.6	
1655	0.089	6.5	1594	0	0	
1664	0	0	1596	0.079	5	
1709	-0.675	389.9	1677	-0.695	405	
3038	0	0	3022	0.029	1.2	
3043	-0.038	2.3	3031	-0.04	2.4	
3115	0	0	3098	-0.039	2.4	
3116	-0.047	3.4	3113	0	0	
3107	-0.03	1.4	3166	-0.031	15	

Table S18. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **2** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled Values are unscaled.

TC									
	Neut	ral		Anion					
	ω	S	λ_{rel}	ω	S	λ_{rel}			
	cm⁻¹		meV	cm⁻¹		meV			
	321	-1.061	180.5	304	-0.001	0			
	322	0	0	319	1.062	180.1			
	637	0.377	45.3	636	0.371	43.7			
	776	-0.094	3.4	762	-0.089	3			
	883	-0.125	6.9	827	0	0			
	941	0	0	881	-0.09	3.6			
	1031	0.112	6.5	1051	0.055	1.6			
	1197	0.28	46.9	1178	0.293	50.7			
	1235	-0.421	109.6	1237	-0.369	84.4			
	1429	0	0	1406	-0.438	134.7			
	1434	0.583	243.5	1412	0	0			
	1453	-0.352	90.1	1423	0	0			
	1467	0	0	1428	0.58	240.2			
	1496	0.259	50.2	1477	0	0			
	1498	0.002	0	1483	0.067	3.4			
	1584	0.041	1.3	1528	0.001	0			
	1613	0.335	90.3	1551	0.288	64.2			
	1685	0	0	1598	-0.24	45.9			
	3187	0.026	1.1	3155	0.03	1.5			
	3215	0.04	2.6	3188	0.046	3.4			

Table S19. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **TC** in its neutral and anionic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

Table S20. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1a** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

		1	1a			
Ne	utral			Cat	ion	
ω	S	λ_{rel}	ω	S	λ_{rel}	
cm ⁻¹		meV	cm ⁻¹		meV	
21() 036	13.6	209	0.354	12	
210	-0 231	6.6	205	-0.231	65	
240	7 0.251	9.5	242	0.231	0.5	
20	3 0.011	0	202	0.275	10.8	
25	-0.011	1 5	207	-0.026	10.8 0 1	
304	5 0.002	1.5	299	0.020	2.4	
30	-0.002	1 3	200	-0.071	0.8	
320	0.03	1.5	3/18	0.071	0.8	
253	0.101	2.0	351	0.002	0.2	
35.	1 _0.030	0.3	353	-0.110	2.5	
39	+ 0.033	22.7	320	-0.374	2.5	
47	-0.07	1 2	470	-0.05	0.6	
472	2 -0.08	1.2	470	-0.007	0.0	
50/	1 0.00	1.0	404	-0.007	24	
50	+ 0 -0.281	24.5	614	-0.035	2.4	
620		24.5 0	616	0.029	22.0	
6/2	0.005 0.156	70	634	0.279	23.9 N	
	2 0.003	7.9	054 6/10	0.002	0 6	
	0.002	0	650	0.130	1 6	
67.		U 	601		ר ב ב	
	0.001	2.3 17 c	160	-0.102	2.5 12 7	
01/	+ -0.164	12.0 E /	000	-0.192	15.7	
810	0.110	21.7	005	-0.109	4.0	
830	0.220	21.7	051	-0.220	21.0	
942	-0.001	U 	951	-0.109	5.0	
945	0.0//	2.8	953	0.019	22.4	
960	7 -0.234	20.3	958	-0.221	23.4	
107	0.120	8.5	1078	0.131	9.2	
112	0.0/2	2.9	1133	0.093	4.9	
1155	0.12	8.3	1158	0.138	11.1	
123	0.043	1.1	1244	0.050	1.9	
125	0.072	3.5	1200	0.045	1.5	
120	-0.082	4.2	12/3	-0.044	1.2	
12/5	-0.227	0.1	1282	-0.12	9.2	
128	-0.01	11.0	1280	-0.155	15.4	
1320	0.102	11.9	1212	-0.105	26.9	
132	2 -0.103	/ ר דו/	1312	-0.202	20.8	
133	0.20/	47.3	1350	-0.19/	20.3	
1344	0.214	30.8	1354	0.023	0.4 ว7 F	
1368	0.047	1.5	1300	0.201	27.5	
1388	-0.112	<u>ک./</u>	1412	-0.221	33.5	
140		0	1413	0.107	8.2	
1408		0	1415	-0.063	2.8	
1420	0.053	2	1415	0.026	0.5	
1435	-0.113	9.1	1423	-0.189	25.3	
1435	0.016	0.2	1429	0.348	ر .00 1 م	
144:		91.3	1440	-0.041	1.2	
1445	-0.104	/.8	1447	-0.001	0 25.4	
1452	-0.005	1 -	1453	-0.22	35.1	
1490	v -0.045	1.5	1489	0	0	
149	-0.038	1.1	1493	-0.001	0	
1509	-0.04/	1./	1510	-0.03	0.7	
1530	0.05	1.9	1527	0.067	3.5	
1537	-0.229	40.5	1531	-0.065	3.3	
1599	-0.296	/0.1	1562	-0.15	17.5	
1612	-0.057	2.7	1567	-0.212	35.4	
1643	3 0.106	9.3	1596	0.09	6.4	
1680	-0.508	216.3	1661	-0.473	185.9	
3117	0.028	1.2	3126	0.001	0	
3124	+ -0.01	0.2	3131	-0.03	1.4	

Table S21. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1b** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

 		1	b			
Neu	ıtral		Cation			
ω	S	λ_{rel}	ω	S	λ_{rel}	
cm ⁻¹		meV	cm ⁻¹		meV	
210	0.154	2.5	209	0.318	10.6	
210	0.289	8.8	217	0.081	0.7	
255	-0.116	17	212	-0.041	0.7	
255	-0.006	0	250	-0 111	1.6	
200	0.000	2.6	200	0.009	0	
300	0.155	0	294	0.005	22	
349	0.369	23.8	346	0.009	0	
352	-0.265	12.3	351	-0.032	0.2	
355	0.205	79	352	0.229	9.2	
358	-0.039	0.3	358	-0.468	39.2	
423	-0.074	1.1	416	-0.091	1.7	
498	0.076	1.4	499	0.074	1.4	
651	0.187	11.3	627	0.001	0	
681	0	0	652	-0,172	9.6	
 709	0.039	0.5	708	0.056	1.1	
751	-0.057	1.2	748	-0.049	0.9	
792	0	0	812	-0.077	2.4	
813	0.082	2.7	822	0	0	
886	0	0	895	-0.183	15	
898	0.138	8.5	919	0.343	53.9	
923	0.341	53.8	932	0.002	0	
924	-0.056	1.4	935	-0.002	0	
1050	0.056	1.7	1049	0.042	0.9	
1066	0.132	9.3	1058	0.045	1.1	
1090	-0.015	0.1	1091	-0.111	6.7	
1108	-0.151	12.6	1106	-0.137	10.4	
1149	0.017	0.2	1151	0.091	4.8	
1156	0.21	25.5	1153	0.14	11.3	
1174	0.013	0.1	1160	0.051	1.5	
1195	-0.027	0.4	1179	-0.206	25.1	
1196	0.154	14.1	1192	0.015	0.1	
1285	-0.09	5.2	1284	-0.131	11	
1287	-0.014	0.1	1285	-0.098	6.1	
1288	-0.143	13.3	1291	-0.033	0.7	
1290	0.002	0	1313	0.227	33.9	
1326	-0.37	90.9	1319	-0.147	14.2	
1358	-0.087	5.1	1357	-0.139	13	
1365	0.008	0	1365	0.117	9.3	
1391	-0.081	4.6	1389	-0.043	1.3	
1402	-0.093	6.1	1400	-0.06	2.5	
1406	0.017	0.2	1408	0.336	79.7	
1407	0.002	0	1414	0.055	2.1	
1407	-0.039	1.1	1414	-0.033	0.7	
1408	-0.001	0	1415	-0.049	1.7	
1439	0	0	1418	-0.027	0.5	
1440	-0.015	0.2	1441	-0.07	3.5	
1442	0.045	1.5	1447	0.005	0	
1450	0.196	27.9	1447	0.001	0	
1464	0.076	4.2	1450	0.02	0.3	
1469	0.009	0.1	1467	0.189	26.3	
1526	-0.061	2.8	1522	-0.037	1	
1569	0.114	10.1	1557	0.083	5.3	
1572	-0.164	21.1	1571	-0.038	1.2	
1622	0.194	30.5	1586	0.225	40.3	
1651	0.074	4.5	1615	0.019	0.3	
1/04	-0.604	311.3	1686	-0.552	257.2	
3116	0.028	1.2	3126	0.002	0	
3125	0.01	0.2	3131	0.03	1.4	

		1c					
Neut	tral		Cation				
ω	S	λ_{rel}	ω	S	λ_{rel}		
cm ⁻¹		meV	cm ⁻¹		meV		
137	-0.012	0	138	-0.145	1.5		
138	-0.148	1.5	149	-0.002	0		
213	0.298	9.4	212	0.303	9.7		
215	-0.028	0.1	216	-0.031	0.1		
300	0.101	1.5	299	0.103	1.6		
356	0.368	24.1	357	0.03	0.2		
358	-0.174	5.4	359	-0.042	0.3		
360	-0.073	1	362	-0.045	0.4		
361	-0 227	93	364	-0.48	42		
474	-0.115	2.8	416	-0 135	3.8		
655	0.113	15.1	631	0.100	0		
686	0.214	15.1	658	0 196	12 7		
721	0.001	0	7/9	0.130	12.7		
751	0 072	2	740	0.073	2		
755	0.075	2	021	0.095	2.0		
022	0.091	5.4	004	0.065	2.9		
 884	0 102	10	904	-0.26	30.5		
908	-0.193	16.9	931	-0.425	84		
938	0.441	91.3	952	0.001	0		
 1079	0.064	2.2	1070	0.013	0.1		
1090	-0.069	2.6	1095	-0.079	3.4		
1151	0.092	4.8	1128	0.052	1.5		
1167	0.14	11.5	1159	0.063	2.3		
11/1	0.003	0	11/1	0.22	28.4		
11/9	0.161	15.4	11/5	0	0		
 1290	-0.046	1.3	1294	-0.082	4.4		
1300	0.052	1.7	1300	0.001	0		
1303	0.195	24.7	1306	0.115	8.6		
 1329	0.051	1.7	1315	0.061	2.4		
1332	0.368	90.1	1324	0.307	62.3		
1371	0.057	2.2	1364	0.066	2.9		
 1391	0.111	8.6	1390	0.011	0.1		
1412	-0.016	0.2	1417	-0.309	67.8		
1413	-0.001	0	1418	-0.041	1.2		
1414	0.001	0	1420	0.114	9.2		
1420	0.014	0.1	1422	0.161	18.4		
1445	-0.025	0.5	1423	-0.221	34.9		
 1445	-0.033	0.8	1437	-0.307	67.7		
1450	-0.392	111.3	1442	-0.091	6		
1452	0.043	1.3	1452	0.019	0.3		
1468	0.003	0	1453	0.04	1.2		
1490	-0.035	0.9	1466	-0.134	13.1		
1504	0.005	0	1508	0.075	4.3		
1514	0.044	1.5	1516	0.038	1.1		
1553	-0.076	4.5	1534	-0.007	0		
1557	0.212	34.9	1541	0.059	2.7		
1567	0.129	12.9	1565	0.141	15.6		
1579	-0.001	0	1568	-0.151	17.9		
1629	0.275	61.5	1605	0.209	34.9		
1673	0.06	3	1632	0.023	0.4		
1719	-0.575	284	1699	-0.513	223.4		
3130	-0.027	1.1	3137	-0.004	0		
3139	0.012	0.2	3144	0.031	15		

Table S22. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1c** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

Table S23. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1d** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

1d								
	Neut	tral		Cation				
ω		S	λ_{rel}	ω	S	λ_{rel}		
cm	-1		meV	cm ⁻¹		meV		
	208	0.382	15.2	207	0.38	14.9		
	253	0.065	0.5	250	0.094	1.1		
	294	0.408	24.4	286	0.001	0		
	298	-0.001	0	296	-0.403	24		
	350	0.272	13	351	0.259	11.8		
	394	0.282	15.7	388	0.327	20.8		
	494	0.107	2.8	487	0	0		
	495	0	0	495	0.11	3		
	624	0.349	37.9	620	0.346	37.1		
	651	-0.111	4	633	-0.002	0		
	675	0.002	0	651	0.114	4.2		
	693	-0.066	1.5	689	-0.065	1.5		
	742	0	0	738	0.139	7.1		
	747	0.147	8.1	739	0.007	0		
	813	-0.1	4	811	-0.118	5.7		
	835	0	0	831	-0.116	5.6		
	849	0.098	4.1	875	0	0		
	955	0	0	965	0.258	32		
	966	0.261	32.8	974	0	0		
	1053	0.06	1.9	1052	0.047	1.2		
	1091	-0.147	11.8	1094	-0.159	13.8		
	1158	-0.183	19.3	1154	-0.187	20.3		
	1237	-0.003	0	1227	-0.047	1.3		
	1239	-0.059	2.2	1238	0	0		
	1264	0	0	1258	-0.103	6.6		
	1271	-0.187	22.3	1263	0	0		
	1279	0.037	0.9	1276	0.107	7.3		
	1311	0	0	1303	-0.045	1.3		
	1319	0.001	0	1314	0.203	27		
	1332	0.353	83.1	1336	0	0		
	1341	0	0	1339	-0.21	29.4		
	1350	0.221	32.9	1356	0	0		
	1382	0.099	6.8	1363	0.323	70.9		
	1407	0.005	0	1409	0.213	32		
	1431	0	0	1421	-0.206	30.3		
	1440	-0.104	7.7	1438	-0.349	87.3		
	1445	0.349	87.9	1448	0	0		
	1461	0	0	1450	-0.14	14.1		
	1493	0.045	1.5	1494	0.001	0		
	1513	0.029	0.7	1511	0.079	4.7		
	1516	-0.001	0	1516	-0.045	1.6		
	1521	-0.124	11.7	1521	0	0		
	1530	0.053	2.1	1529	0	0		
	1588	0.379	113.9	1572	0.248	48.4		
	1681	0.544	248.8	1660	0.517	222.2		
3	3117	-0.031	1.5	3123	-0.016	0.4		
	3123	0.012	0.2	3132	0.035	1.9		

Table S24. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **1e** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

1e									
Neu	utral			Cat	ion				
ω	S	λ_{rel}	ω	S	λ_{rel}				
cm ⁻¹		meV	cm ⁻¹		meV				
210	0.227	5.4	202	0.203	4.2				
262	0.182	4.3	253	0.214	5.8				
289	0.242	8.4	283	0	0				
299	-0.004	0	285	-0.189	5.1				
327	-0.53	45.8	325	-0.002	0				
331	0	0	326	0.525	45				
357	-0.065	0.8	355	-0.149	3.9				
384	0	0	380	-0.243	11.2				
393	0.196	7.6	383	0	0				
478	0.085	1.7	473	0.07	1.2				
483	0.005	0	478	0.07	0				
488	-0.061	0 9	489	-0.067	1 1				
637	-0 277	24.4	617	0.007	1.1				
639	-0.166	24.4	624	0	0				
665	-0.100	0.0	627	0 221	2/ 0				
679	-0.264	22.6	675	-0.259	22 5				
604	0.204	25.0	610	-0.238 0 050	22.5				
090	0.074	1.9	000 804	0.038	1.2				
013	0.12	5.9	000 204	0.001	50				
828	0.057	1.4	000	0.121	0.3				
0/9	-0.057	1.4	0/0	-0.022	22.0				
902	0 221	22	090	-0.220	22.9				
1051	0.221	1.4	1049	0	0				
1051	0.052	1.4	1048	0.07	26				
1050	0.076	2 1	1052	0.07	2.0				
1005	-0.070	5.1	1000	0 107	6 2				
1120	-0.054	1.7	1155	-0.107	0.2				
1108	0.265	41.1	1155	0.190	22.2				
1108	0.205	41.1	11/0	0 102	22.2				
1208	0 107	6.0	1210	0.193	22.3				
1214	0.107	0.9	1219	0.046	1 2				
1224	0 406	166 /	1227	0.040	1.5				
12/3	-0.496	150.4	1271	-0.4	101.8				
1303	-0.039	1 72 1	12/9	-0.259	42.9				
1311	-0.334	/3.1	1296	-0.169	18.4				
1322	-0.014	0.1	1313	-0.319	00.9				
1349	-0.031	0.7	1361	-0.133	12.1				
13/9	0.363	90.6	1369	0.095	b.1				
1389	0.011	0	140/	0.347	84.6				
1406	-0.011	0.1	1414	-0.105	/.8				
1439	0.062	2.8	1441	0	0				
1452	0	0	144/	0.077	4.3				
1476	0.112	9.2	1450	0.009	0.1				
1485	0.038	1.1	1481	0.145	15.6				
1503	0.046	1.6	1495	0.015	0.2				
1528	-0.016	0.2	1528	-0.05	1.9				
1540	0	0	1530	0.113	9.8				
1549	0.178	24.5	1552	0	0				
1637	-0.161	21.3	1556	-0.056	2.5				
1648	0.192	30.5	1603	0	0				
1672	0	0	1614	-0.091	6.6				
1676	0.104	9	1662	0.364	109.9				
1679	0.439	162.1	1670	0.001	0				
1679	0	0	1672	0.295	72.5				
3116	-0.033	1.7	3125	-0.001	0				
3123	0.001	0		0.034	1.8				

РҮ										
	Neu	itral			Cat	ion				
	ω	S	λ_{rel}	ω	S	λ_{rel}				
	cm⁻¹		meV	cm⁻¹		meV				
	422	-0.432	39.3	424	-0.45	43				
	615	0.308	29.2	624	0.29	26.2				
	835	-0.196	16.1	837	-0.193	15.6				
	1125	0.088	4.4	1129	0.097	5.3				
	1201	-0.182	20	1200	-0.276	45.9				
	1294	-0.757	370.4	1271	-0.001	0				
	1295	0.131	11.2	1291	0	0				
	1297	0	0	1301	0.683	303.5				
	1390	-0.109	8.3	1373	-0.001	0				
	1415	0	0	1412	0.189	25.3				
	1488	0.453	152.9	1475	0.643	305				
	1763	0.831	608.4	1742	0.72	451.6				
	3248	0.034	1.9	3268	0.03	1.5				

Table S25. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **PY** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

2									
	Neu	ıtral		Cation					
	ω	S	λ_{rel}	ω	S	λ_{rel}			
	cm⁻¹		meV	cm⁻¹		meV			
	216	-0.336	12.2	214	-0.342	12.5			
	320	-0.092	1.3	318	-0.091	1.3			
	468	-0.389	35.4	471	-0.378	33.5			
	487	-0.118	3.4	482	-0.16	6.2			
	579	-0.163	7.7	580	0	0			
	593	0	0	587	-0.173	8.8			
	665	0.229	17.5	635	0	0			
	693	0	0	665	-0.211	14.8			
	822	0.063	1.6	820	0.059	1.5			
	929	0	0	940	-0.201	19			
	939	0.18	15.3	940	0	0			
	943	0	0	955	-0.068	2.2			
	952	-0.074	2.6	964	0	0			
	1051	-0.039	0.8	1050	-0.045	1.1			
	1145	-0.167	16	1143	-0.195	21.7			
	1147	0.061	2.1	1172	0	0			
	1173	0	0	1180	0.015	0.1			
	1182	0	0	1183	-0.147	12.8			
	1187	0.07	2.9	1201	0	0			
	1238	0	0	1231	-0.041	1.1			
	1240	0.089	4.9	1238	0	0			
	1261	0.512	165.6	1258	0	0			
	1264	0	0	1261	0.297	55.6			
	1296	-0.09	5.3	1266	-0.369	86.2			
	1329	-0.442	130.1	1319	-0.394	102.5			
	1378	0.153	16.1	1382	0	0			
	1401	-0.013	0.1	1392	-0.114	9			
	1407	0	0	1395	0.057	2.2			
	1420	0.04	1.1	1417	0	0			
	1439	0.067	3.2	1447	0	0			
	1440	0	0	1448	-0.128	12			
	1470	-0.306	68.8	1457	-0.498	180.8			
	1509	-0.044	1.5	1511	-0.03	0.7			
	1529	-0.039	1.2	1529	-0.044	1.4			
	1635	0.08	5.2	1590	0	0			
	1655	0.078	5	1600	0.044	1.5			
	1674	0	0	1624	-0.038	1.1			
	1709	-0.668	381.7	1694	-0.589	294			
	3116	0.037	2.1	3127	0	0			
	3124	0.018	0.5	3132	0.04	2.5			
	3197	0.027	1.1	3216	0.019	0.6			

Table S26. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **2** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

TC							
Neutral				Cation			
	ω	S	λ_{rel}	ω	S	λ_{rel}	
	cm ⁻¹		meV	cm⁻¹		meV	
	321	0.182	5.3	319	0.173	4.8	
	776	-0.065	1.7	781	0	0	
	869	0	0	892	0.067	2	
	883	-0.1	4.4	899	0	0	
	1031	0.158	12.9	1058	0.11	6.4	
	1197	0.214	27.5	1207	0.001	0	
	1201	0	0	1210	-0.281	47.9	
	1235	-0.394	96.1	1253	-0.392	96.3	
	1429	0	0	1424	-0.339	81.7	
	1434	0.519	192.8	1431	0	0	
	1453	-0.25	45.5	1446	0	0	
	1467	0	0	1454	0.553	222.7	
	1496	0.195	28.4	1498	0.01	0.1	
	1584	0.193	29.5	1566	0.003	0	
	1613	0.532	228.5	1568	0.35	95.9	
	1685	0	0	1618	-0.383	118.6	
	3215	-0.027	1.1	3231	-0.021	0.7	

Table S27. Frequency, ω (cm⁻¹), Huang-Rhys factors, S, and relaxation energies, λ_{rel} (meV), for the totally symmetric vibrations of **TC** in its neutral and cationic state as computed at ω -tuned ω B97X-D/cc-pVTZ level of theory. Values are unscaled.

Figure S1. Cyclic voltammogram of **2** in tetra-ⁿbutylammonium hexafluorophosphate (0.1 M) in dichloromethane containing ferrocene (Fc/Fc^+).

References

- 1. E. L. Graef and J. B. L. Martins, J. Mol. Model., 2019, 25, 183.
- 2. C. S. Frampton, K. S. Knight, N. Shankland and K. Shankland, *J. Mol. Struct.*, 2000, **520**, 29-32.
- 3. J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.
- 4. R. A. Kendall, T. H. Dunning and R. J. Harrison, J. Chem. Phys., 1992, 96, 6796-6806.