Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information for

Polymer Solubility Mechanism in Ionic Liquids: ¹H-NMR Spectra and Two-parameter Hydrogen Bonding Analysis

Ming-Xuan Du 1,2, Ya-Fei Yuan 1,2, Jin-Ming Zhang 1, Jia-Jian Liu 1, Chen-Yang

Liu^{1,2}*

- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- 2. University of Chinese Academy of Sciences, Beijing 10049, China E-mail:dumingxuan@iccas.ac.cn liucy@iccas.ac.cn

Experimental section

1. Materials

Polymers: Poly(vinyl pyrrolidone) (PVP, $M_w = 40000$) was purchased from TCI Shanghai Chemical Industry Development Co., Ltd., poly(ethylene oxide) (PEO, $M_v = 20000$) was purchased from Shanghai Aladdin Bio-technology Co., Ltd, China. Poly(methyl methacrylate) (PMMA, $M_n = 8000$) was synthesized using Reversible Addition-Fragmentation Chain Transfer (RAFT) method. Poly (methyl hydroxyethyl acrylate) (PHEMA) was purchased from Beijing Yinuokai Technology Co., Ltd, China. Poly(vinyl phenol (PVPh, $M_w = 11000$ g/mol) and poly(vinyl alcohol) (PVA, $M_w = 30000$ g/mol) were purchased from Sigma Aldrich.

Ionic Liquids: 1-Butyl-3-methylimidazolium bis((trifluoromethane)sulfonyl)imide ([C₄mim)[NTf₂], 99%) and 1-Butyl-3-methylimidazolium acetate ([C₄mim][Ac], 99%) were purchased form Center for Green Chemistry and Catalysis of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.

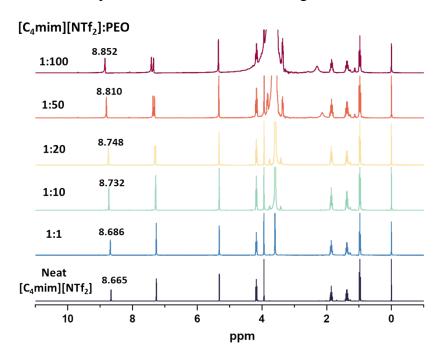
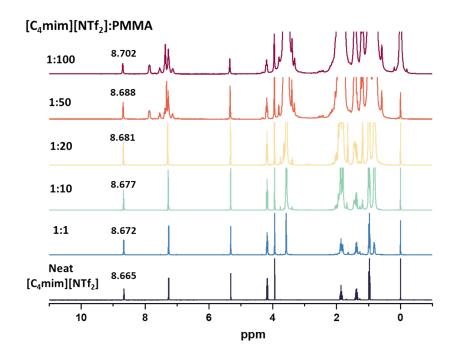
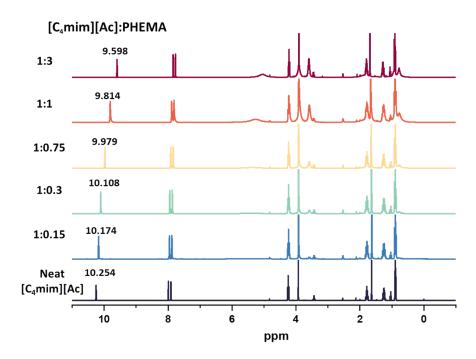
2. ¹H-NMR spectrum measurement

All the ¹H-NMR measurement were tested on a Bruker AV 400 spectrometer with 16-64 scans at 298K, using TMS as an internal reference. For β-Type polymers/[C₄mim][NTf₂], deuterium CD_2Cl_2 is adopt as reagent. [C₄mim][NTf₂]:CD₂Cl₂ is fixed at 1:500 and [C₄mim][NTf₂]: β-Type polymers are 1:1, 1:5, 1:10, 1:20, 1:35, 1:50 and 1:100 respectively. For α -Type polymers/ $[C_4mim][Ac]$, DMSO-d₆ is used deuterium reagent. [C₄mim][Ac]:DMSO-d₆ is fixed at 1:14 and [C₄mim][Ac]: α-Type polymers are 1:0.15, 1:0.3, 1:0.75, 1:1 and 1:3 respectively.

3. Solubility experiment of PVPh in ILs

The solubility experiments of PVPh in ILs followed the methods reported in the literature^[1]. Due to the high viscosity of ILs, the dissolution of PVPh (3 wt%) was carried out at 80 °C for 10 h. Then cool to room temperature and let stand for 72 h. PVPh was regarded as soluble in ILs when the PVPh/ILs solutions were

homogeneous and transparent, otherwise, PVPh was regarded as insoluble in ILs.

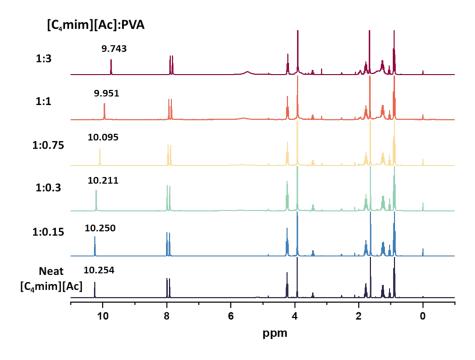

Figure S1. The ¹H-NMR spectra of [C₄mim][Ntf₂]/PEO in CD₂Cl₂.

Figure S2. The ¹H-NMR spectra of [C₄mim][Ntf₂]/PMMA in CD₂Cl₂.

Figure S3. The ¹H-NMR spectra of [C₄mim][Ac]/PHEMA in DMSO-d₆.

Figure S4. The ¹H-NMR spectra of [C₄mim][Ac]/PVA in DMSO-d₆.

Table S1. Solubility results of PVPh in ILs. (KT parameters of ILs cited from Ref 2)

Ionic liquids	α	β	Solubility
[C ₂ mim][Ac]	0.57	1.06	soluble
[C ₄ mim][Ac]	0.43	1.05	soluble
[C ₄ mim][MeSO ₃]	0.53	0.66	soluble
[C ₄ mim][TFO]	0.62	0.49	soluble
$[C_2 mim][BF_4]$	-	-	soluble
$[C_4 mim][BF_4]$	0.63	0.37	soluble
$[C_4mim][N(CN)_2]$	0.54	0.60	soluble
$[C_2 mim][NTf_2]$	0.71	0.23	insoluble
$[C_4mim][NTf_2]$	0.72	0.24	insoluble
$[C_8mim][NTf_2]$	0.60	0.29	insoluble
[C ₄ mim][PF ₆]	0.63	0.19	insoluble
[C ₆ mim][PF ₆]	-	-	insoluble
[C ₈ mim][PF ₆]	-	-	insoluble

Reference

- 1 Y. F. Yuan, J. M. Zhang, B. Q. Zhang, J. J. Liu, Y. Zhou, M. X. Du, L. X. Han, K. J. Xu, X. Qiao and C. Y. Liu, Polymer solubility in ionic liquids: dominated by hydrogen bonding. *Phys. Chem. Chem. Phys.*, 2021, **23**, 21893–21900.
- M. A. Ab Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan, J. P. Hallett, P. A. Hunt, H. Niedermeyer, J. M. Perez-Arlandis, M. Schrems, T. Welton and R. Wilding, Understanding the polarity of ionic liquids, *Phys. Chem. Chem. Phys.*, 2011, 13, 16831–16840.