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We provide additional supporting data as well as contextual information to the main text here.

All input and output files are provided on GitHub, which contains a Jupyter Notebook file that

analyses the data.

S1. ACTIVE BCM MD SIMULATION

The goal of on-the-fly active learning MD simulations is to automatically construct both the

dataset and the inducing set. Using these sets, the weight parameter vector is determined by

fitting the predicted values of energy, forces, and virial pressures to their target values. During the

MD simulations, we update the inducing set zP = {χj} and dataset XP = {Rn} according to the

SGPR technique. The SGPR technique works as follows.

1. A new configuration x∗ is generated from the MD simulation.

2. The local chemical environments (LCEs) ρ of atoms are generated.

3. The kernel matrices for energy K(ρi, χj), forces K̇µ
i (R,χj), and virial pressures K̇µ

i (R,χj)r
ν
i

are calculated as per Eq (6), (7), and (9).

4. Energy, forces, and virial pressures are predicted using Eq. (11), (13), and (14) for the BCM

potential.

5. Check for new LCEs by calculating the covariance loss σ2(ρ) between an LCE and the

inducing sets of all local experts:

σ2(ρ) = (1 −KρmK−1
mmKT

ρm). (S1)

6. Update the inducing set when new LCEs are detected, with the condition σ2(ρ) > σcutoff .

Here, σcutoff = 0.05 .

7. The updated inducing set z = {χj} changes the kernel matrices for energy, forces, and virial

pressures, which in turn affects the predicted energy, forces, and virial pressures. If the

change in the predicted energy ∆E is significant (∆E > ∆Ecutoff), we update the dataset

by adding the new configuration x∗ along with its energy, forces, and virial pressures. In our

calculation, ∆Ecutoff = 0.05 eV.

https://github.com/myung-group/Data_active_BCM.git
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FIG. S1. On-the-fly active learning of Bayesian committee machine (BCM) potential during MD simulations.

During each time-step of the MD simulation, the BCM potential calculates energy, forces, and stresses. If

the number of data in XP = {Rn} or inducing set zP = {χj} exceeds the threshold of a predefined kernel

size (for example, nmax = 50, mmax = 200), a new local expert sparse Gaussian process regression potential

model is trained.

S2. LIQUID BORON NITRIDE NV T MD SIMULATION

NV T MD simulations on liquid boron nitride were carried out at T = 7500 K. The simulations

were conducted on a unit cell (with a lattice parameter of 7.252Å) consisting of 64 atoms as shown

in Figure S2.

The MD simulations were carried out using the MD engine from the Atomic Simulation Envi-

ronment (ASE) python library.1 The simulations ran for 8 ps using Nosé-Hoover dynamics with a

target temperature of 7500 K, a time step of 1 fs and time constant of 25 fs. For these ASE MD

simulations, the forces were calculated using the Vienna Ab initio Simulation Package (VASP).2,3
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FIG. S2. High-density liquid-phase BN Unit cell where green represents Boron atoms, and white represents

Nitrogen atoms, respectively.

Before running the MD simulations, we performed convergence calculations for cutoff energy and

the k-point grid (Figure S3) to achieve accurate DFT results. Based on these results, we employed

an energy cutoff of 650 eV , and (3 × 3 × 3) Monkhorst-pack k-grid at the r2SCAN-D4 functional

level.4,5

FIG. S3. K-point grid convergence calculations for high density liquid phase of BN.
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S3. LI10GE(PS6)2 NpT MD SIMULATION

All DFT calculations were performed using the Vienna Ab-initio Simulation Package(VASP)2,3

with the projector augmented wave (PAW) method at the Perdew–Burke–Ernzerhof (PBE)6 func-

tional level to train the SGPR potential. The LGPS model, sourced from the Materials Project

database (ID: mp-696128), consisted of 50 atoms (Li: 20, Ge: 2, P: 4, S: 24) within a tetragonal box

measuring 8.8 Å × 8.8 Å × 12.7 Å. NpT MD simulations were performed under the atmospheric

pressure (∼0.101 MPa) using a Nosé-Hoover thermostat and a Parrinello-Rahman barostat, with

1 fs time step, 500 eV energy cut-off, and (1 × 1 × 1) Monkhorst-pack k-point mesh.

We calculated the mean square displacement(MSD) as

MSD(t) =
1

N

N∑
i=1

|r⃗i(t) − r⃗i(0)|2 (S2)

where N is the number of particles, r⃗i(t) and r⃗i(0) is the position of the i-th particle at time t

and reference position. The diffusivity (D) is given as

D = lim
t→∞

1

2dt
⟨MSD(t)⟩ (S3)

where d is number of dimensions and ⟨·⟩ indicates the ensemble average. We estimated the diffusion

activation energy by assuming an Arrhenius temperature dependence

D = D0e
−Ea/kBT (S4)

FIG. S4. The unit cell of LGPS (left) and Li-ion diffusivity (cm2/s) with respect to temperature (right)

(Li: green, S: yellow, P: purple, Ge: indigo). The red line represents the trend ranging from 600 K to 900

K. The error bars are estimated using the block average with block size of 10 ps.
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S4. ICE-LIQUID NpH MD SIMULATIONS

TABLE S1. Ice-liquid coexisting systems. Total number of water molecules in the simulation box (NH2O)

and initial cell dimensions (⃗a, b⃗, c⃗,α, β, γ) of ice-liquid coexisting systems for NpH MD simulations.

NH2O (|⃗a|, |⃗b|, |⃗c|, α, β, γ)

Ice II - Liquid 864 (23.415, 23.415, 43.910, 84.826, 84.826, 113.100)

Ice III- Liquid 648 (19.982, 20.349, 41.379, 90, 90, 90)

Ice V - Liquid 672 (18.553, 45.374, 20.833, 90, 109.215, 90)
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FIG. S5. Instantaneous pressures px, py, and pz values in anisotropic NpH MD simulations of coexisting

ice II-liquid system at pressure of p = 0.2 GPa. Instantaneous pressures are adjusted to specified target

pressure during NpH MD simulations. Note that anisotropic NpH MD simulations show no significant

pressure differences along different axes.
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FIG. S6. Enthalpy (H) and total energy (Etot) during NpH MD simulations of coexisting ice II-liquid

systems at pressures of p = 0.2 and 0.6 GPa. H is conserved while the total energies fluctuate.
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FIG. S7. Instantaneous temperature values in NpH MD simulations of coexisting ice II-liquid system at

pressures of p = 0.2 and 0.6 GPa. Instantaneous temperatures are tuned to approach melting temperature,

ensuring that they meet the condition µice(p, T )T=Tm
= µliq(p, T )T=Tm

.
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S5. MELTING POINTS OF ICE-WATER FOR MB-POL

In Figure S8, we compared the melting points of ice-water using the MB-pol model in our study

(shown with circle lines) with those from Bore and Paesani’s study7 (indicated by square lines).

While the melting lines of ice III are highly very similar, those of ice V are significant different.

To understand why ice V behaves differently, we aim to share the methods used in both stud-

ies. Bore and Paesani7 described their approach in their supplementary Note3: “These calcula-

tions were carried out following a four-stage procedure ... (a) we determined the classical melting

points from the chemical potential differences between liquid water and each ice polymorph using

enhanced-coexistence simulations carried with the DNN@MB-pol potential, (b) starting from the

classical melting points obtained with DNN@MB-pol, we used thermodynamic perturbation theory

to determine the classical melting points of MB-pol, (c) ...”

exp [−β∆G(p, T )] = ⟨exp[−β∆U ]⟩p,T,DNN@MB−pol (S5)

∆U = UMB−pol(RDNN@MB−pol) − UDNN@MB−pol(RDNN@MB−pol) (S6)

∆µ = µMB−pol − µDNN@MB−pol =
∆G

NH2O
(S7)

To calculate the chemical potentials µMB−pol of the MB-pol water model in Eq. (S7) using Eq.

(S5), they utilized the coordinates {RDNN@MB−pol} sampled within the DNN@MB-pol potential

model to compute the potential energy UMB−pol in Eq. (S6). Eq. (S5) represents the mathemat-

ical formulation of the free energy perturbation (FEP) identity introduced by Zwanzig in 19548

rather than thermodynamic perturbation theory. Generally, free energy perturbation is only valid

when the coordinates sampled from DNN@MB-pol closely match those from MB-pol. Hence, the

accuracy of the free energy difference calculated using Eq. (S5) strongly relies on how much two

thermodynamic states overlap in configuration space. To mitigate this overlap requirement, a se-

ries of intermediate thermodynamic states are introduced between two thermodynamic end states

UMB−pol and UDNN@MB−pol as (1 − λ)UDNN@MB−pol + λUMB−pol. Because Bore and Paesani7 did

not performed MD simulations with all intermediate and the final thermodynamic states, their esti-

mated potential energies were inaccurate due to neglecting the requirement of the overlap between

adjacent thermodynamic states.

In our study, on the other hand, we sampled all configurations {RMB−pol} from NpH MD sim-

ulations with the MB-pol water model when we estimate the melting points for MB-pol. Similarly,

the melting points for the BCM-MLP model were estimated with all configurations {RBCM−MLP}

sampled from NpH MD simulations with the BCM-MLP model. In short, we directly estimated
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the melting points, which rely on their specific thermodynamic states and potential energy surface.

In summary, the main reason why our melting points and theirs don’t match up, especially

melting points of ice V, is because we used different sets of configurations. To estimate the melting

points for the MB-pol model, they used the configurations from DNN@MB-pol, while we used ones

from MB-pol directly. We predict that if they had calculated the melting points using the MB-pol

potential instead of using DNN@MB-pol potential, the melting points of ice V would be much

more similar.
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FIG. S8. The melting points of ice-water for MB-pol in our study (shown with circle lines) compared to

those in Paesani’s study (indicated by square lines). Melting points of Ice V:pae@MB-pol were obtained

with the initial configuration that the Bore and Paesani used in their study.
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