Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information Electron scattering data and potential energy landscapes for plasma modelling of perfluoroalkyl substances

Marin Sapunar, Mackenzie Meyer, Harindranath B. Ambalampitiya, Mark J. Kushner and Zdeněk Mašín

PFBA

	ADC(2)	CCSD	B3LYP	ω B97X-D	CASSCF	CASPT2
	d-aug-cc-	aug-cc-	def2-	def2-	aug-cc-	aug-cc-
	pVTZ	pVDZ	TZVPD	TZVPD	pVDZ	pVDZ
$\overline{S_1}$	5.33	5.62	5.41	5.51	5.50	5.51
S_2	7.57	7.96	7.43	8.04	7.55	7.86
S_3	8.02	8.54	7.62	8.21	8.89	9.90
S_4	8.49	8.86	8.18	8.69	x	x
S_5	8.81	8.96	8.42	9.00	7.96	9.20
S_6	8.82	9.48	8.50	9.18	9.49	8.71
S_7	9.04	9.81	8.58	9.25	9.73	10.13
S_8	9.29	10.05	8.71	9.71		
S_9	9.49	10.17	8.92	9.88		
S_{10}	9.65	10.34	9.18	10.01		

PFBS

1120							
	ADC(2)	CCSD	B3LYP	ω B97X-D	CASSCF		
	d-aug-cc-	aug-cc-	def2-	def2-	aug-cc-		
	pVTZ	pVDZ	TZVPD	TZVPD	pVDZ		
$\overline{S_1}$	7.74	8.22	7.53	8.08	8.33		
S_2	7.90	8.39	7.64	8.22	8.74		
S_3	8.09	8.62	7.94	8.43	9.07		
S_4	8.29	8.78	8.07	8.65	9.22		
S_5	8.44	8.90	8.15	8.67	9.59		
S_6	8.50	9.00	8.33	8.73	10.13		
S_7	8.71	9.09	8.35	8.95	10.24		
S_8	8.74	9.31	8.42	9.03			
S_9	8.87	_	8.51	9.17			
S_{10}	9.02	_	8.66	9.32			

Table S1: Additional electronic structure results for PFBA and PFBS.

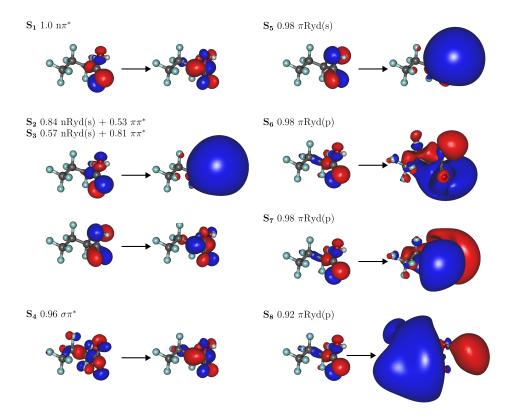


Figure S1: Dominant natural transition orbitals for the 8 lowest singlet excited states of PFBA calculated at the ADC(2)/aug-cc-pVDZ level. In the case of S_2 and S_3 the NTOs for the two states are almost identical due to the two states being a mixture of the same two dominant contributions so only the NTOs of S_2 are shown. Rydberg-like orbitals are shown with an isovalue 0.02, while other orbitals are shown with an isovalue of 0.05.

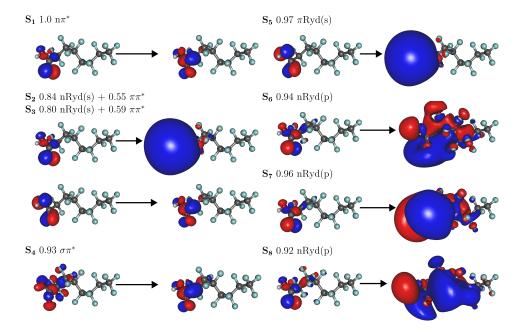


Figure S2: Dominant natural transition orbitals for the 8 lowest singlet excited states of PFOA calculated at the ADC(2)/aug-cc-pVDZ level. In the case of S_2 and S_3 the NTOs for the two states are almost identical due to the two states being a mixture of the same two dominant contributions so only the NTOs of S_2 are shown. Rydberg-like orbitals are shown with an isovalue 0.015, while other orbitals are shown with an isovalue of 0.05.

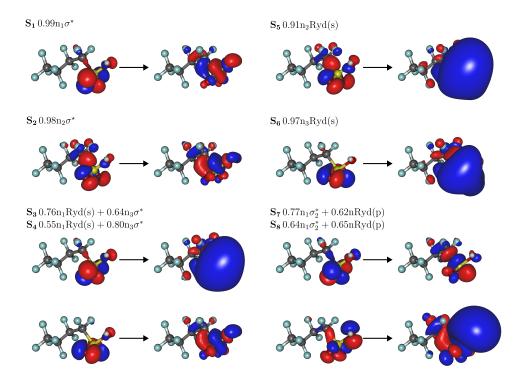


Figure S3: Dominant natural transition orbitals for the 8 lowest singlet excited states of PFBS calculated at the ADC(2)/aug-cc-pVDZ level. In the case of S_3/S_4 and S_7/S_8 the NTOs for the two states are almost identical due to the two states being a mixture of the same two dominant contributions so only the NTOs of S_3 and S_7 are shown. Rydberg-like orbitals are shown with an isovalue 0.02, while other orbitals are shown with an isovalue of 0.05.

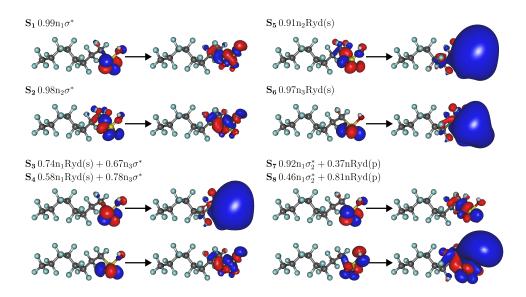


Figure S4: Dominant natural transition orbitals for the 8 lowest singlet excited states of PFOS calculated at the ADC(2)/aug-cc-pVDZ level. In the case of $\rm S_3/S_4$ and $\rm S_7/S_8$ the NTOs for the two states are almost identical due to the two states being a mixture of the same two dominant contributions so only the NTOs of $\rm S_3$ and $\rm S_7$ are shown. Rydberg-like orbitals are shown with an isovalue 0.015, while other orbitals are shown with an isovalue of 0.05.

	PFBA	PFBS		
State	Transition	State	Transition	
$\overline{S_1}$	$0.98 \ \mathrm{n}\pi^*$	S_1	$0.81 \text{ n}_2 \sigma_1^*$	
S_2	$0.66 \; \pi_1 \pi^* + 0.56 \; \mathrm{nRyd(s)}$	S_2	$0.54~\mathrm{n_3Ryd}+0.52~\mathrm{n_2Ryd}$	
S_3	$0.92 \pi_1 \mathrm{Ryd}(\mathrm{s})$	S_3	$0.52~{ m n_1}\sigma_1^*+0.45~{ m n_1Ryd}$	
S_4	$0.60 \; \pi_1 \pi^* + 0.72 \; \mathrm{nRyd(s)}$	S_4	$0.68 \; \mathrm{n_2} \sigma_2^* + 0.35 \; \mathrm{n_1} \sigma_1^*$	
S_5	$0.98 \sigma \pi^*$	S_5	$0.89 \mathrm{n}_1 \sigma_2^*$	
S_6	$0.82 \pi_2 \mathrm{Ryd(s)}$	S_6	$0.57~{ m n}_2\sigma_1^*+0.48~{ m n}_1{ m Ryd}$	
S_7	$0.87 \; \pi_2 \pi^*$	S_7	$0.60~{\rm n_3}\sigma_1^* + ~0.32~{\rm n_1}\sigma_1^*$	

Table S2: Dominant transitions for the seven lowest excited singlet states of PFBA and PFBS at the CASSCF/cc-pVDZ level. The active space orbitals are shown in Fig. S5.

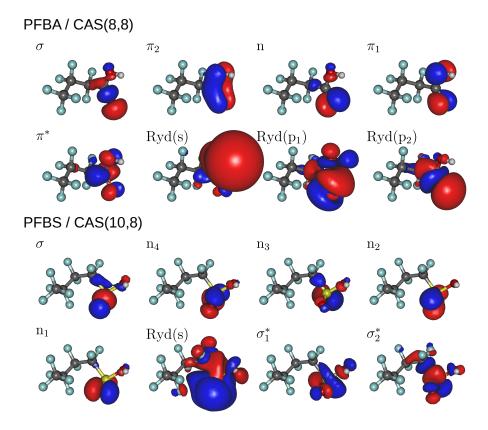


Figure S5: Active space orbitals of PFBA and PFBS at the CASSCF/cc-pVDZ level. Rydberg-like orbitals are shown with an isovalue 0.015, while other orbitals are shown with an isovalue of 0.05.

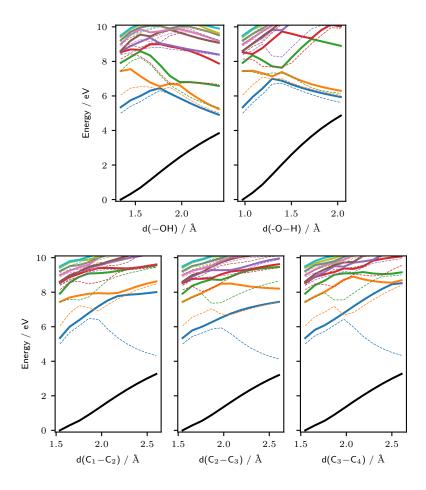


Figure S6: Scan of the PES of PFOA along the H, OH, C_1-C_2 , C_2-C_3 and C_3-C_4 dissociation coordinates at the RI-ADC(2)/aug-cc-pVDZ level relaxed on the S_0 surface. The ten lowest singlet (full lines) and triplet (dashed lines) excited states are shown.

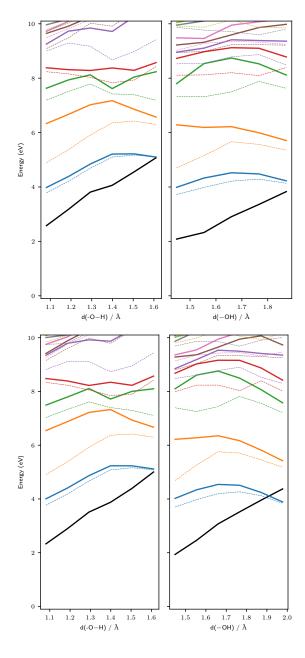


Figure S7: Scan of the PES of PFBA along the OH and H dissociation coordinates at the RI-ADC(2)/aug-cc-pVDZ level relaxed on the S_1 (upper panels) and T_1 (lower panels) surfaces. The ten lowest singlet (full lines) and triplet (dashed lines) excited states are shown.

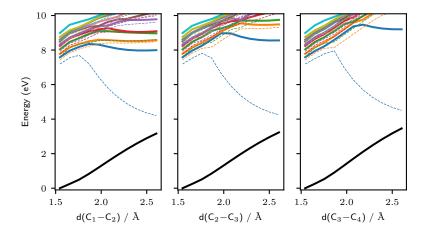


Figure S8: Scan of the PES of PFBS along the C_1-C_2 , C_2-C_3 and C_3-C_4 dissociation coordinates at the RI-ADC(2)/aug-cc-pVDZ level relaxed on the S_0 surface. The ten lowest singlet (full lines) and triplet (dashed lines) excited states are shown.

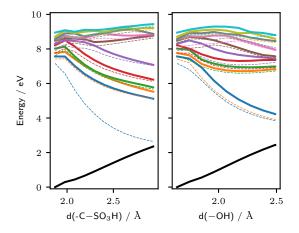


Figure S9: Scan of the PES of PFOS along the sulfo and OH dissociation coordinates at the RI-ADC(2)/aug-cc-pVDZ level relaxed on the S_0 surface. The ten lowest singlet (full lines) and triplet (dashed lines) excited states are shown.

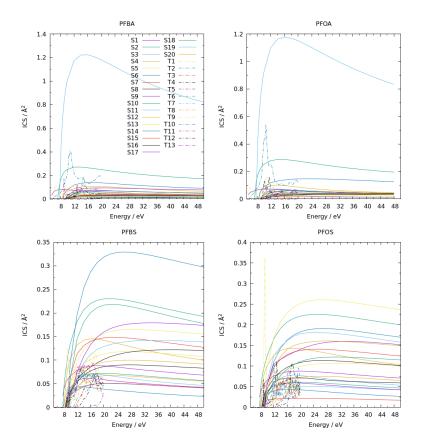


Figure S10: Recommended cross sections for impact excitation of singlet and triplet states of PFBA, PFOA, PFBS and PFOS calculated using the Born approximation and the R-matrix approach.

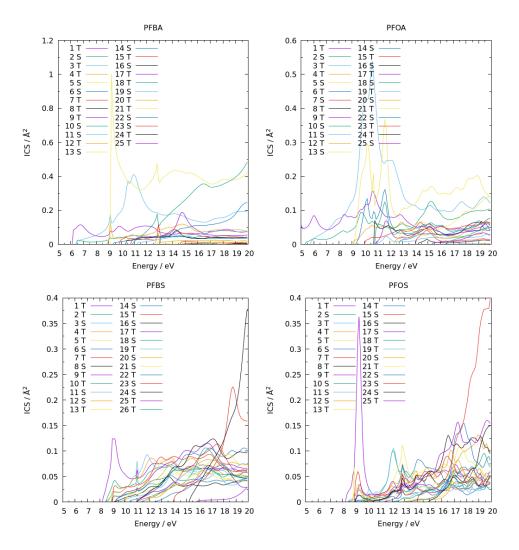


Figure S11: Complete set of R-matrix CAS inelastic cross sections for PFBA, PFOA (top row), PFBS, PFOS (bottom row) calculated on the CAS level.