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Fig. S1. Semilog Plot of relaxation times vs. reciprocal T of 26 wt.% fraction of water in PPG400. 
Close and open circles indicate α- and ν-processes, respectively. Asterisks are the relaxation times 
of the “effective” relaxation obtained from the convolution procedure indicated by the Williams 
ansatz. Black and red symbols indicate isobaric scan done at P=0.1 and 500 MPa, respectively. 
Dotted lines are Arrhenius fits to the data in the glassy state. Figure reproduced from Ref.[S1] by 
permission from Elsevier.
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Fig. S2. Comparison of electric loss modulus spectra recorded at different temperature and 
pressure combinations and constant loss peak frequency for procainamide HCl with data from 
Ref.[S2] replotted.

Fig. S3. Normalized M(f) spectra of [Si-MIm][BF4] at different combinations of P and T to show 
co-invariance of , ,  and n at constant .  Red open triangles (P=600 MPa, T=253 K). Blue 
circles (P=0.1 MPa, T=213 K). Green open squares (P=0.1 MPa, T=253 K). Blue and red lines are 
fits by Fourier transform of stretched exponential correlation function with n=0.43. The inset show 



3

co-invariance at two more constant values of . Blue triangles are data at ambient pressure and 
T=218 and 208 K from right to left. Red filled circles are data at constant T=253 K and P=300 
MPa and 500 MPa from right to left. The arrows indicate the locations of the logarithm of the 
primitive conductivity relaxation frequencies, logf0, which agree with the most probable -
conductivity relaxation frequencies within a factor of about 2. Figure reproduced from Ref.[S3] 
by permission from ACS.

 Fig. S4. T-P superposition of loss spectra for 10% QN in tristyrene measured for different T and 
P combinations but the same = 0.67 s. The line is a Fourier transformed of the Kohlrausch 
function with KWW  (1-n) = 0.53. The results demonstrate the co-invariance of three quantities, 
, n, and JG, to widely different combinations of T and P. Data of Kessaire et al. [S4] replotted.
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