SUPPLEMENTARY MATERIALS

Carbon materials for effective purification of aqueous solutions from tributyl phosphate

Tamuna Bakhiia, ^a Andrey Toropov, ^a Iurii Nevolin, ^{a,b} Konstantin Maslakov, ^a Anna Romanchuk, *^a Stepan Kalmykov ^a

^aDepartment of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia ^bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia

*Correspondence: romanchukay@my.msu.ru

	•			
Sample	С	0	S	AI
А	89.0	9.5	_	1.5
В	95.6	4.3	0.1	-
С	94.7	5.3	-	-
D	93.0	7.0	-	-

Table S1. XPS elemental compositions of studied sorbents, at. %.

Table S2. Contents of different carbon species in studied samples determined by XPS, at. %.

Species (Binding energy) / Sample	А	A after 3M HNO_3	В	B after $3M HNO_3$
C–C (sp²) ~284.4 eV	62.3	36.4	64.6	34.0
C–C (sp³) ~284.8	21.2	20.3	24.8	13.6
C–O (epoxy, C–OH) ~286.7	5.0	5.9	5.4	3.6
O=C−O ~288.6	1.8	8.3	1.1	4.8

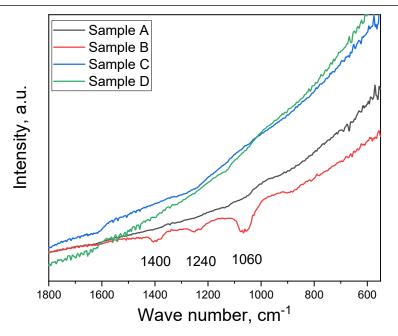


Figure S1. IR spectra of studied samples.

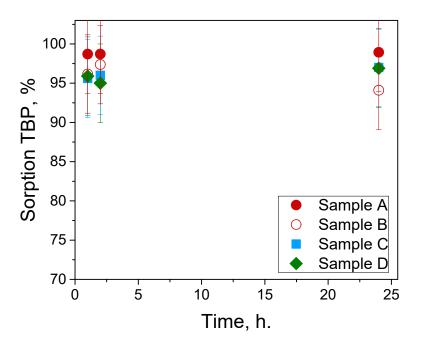


Figure S2. Kinetics of TBP sorption in 0.5M HNO₃ ([TBP]/[sorbent] = 0.4 g/g).

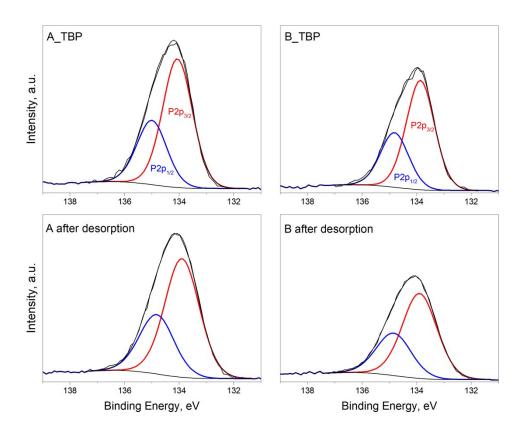


Figure S3. P2p XPS spectra of samples A and B before and after thermal desorption of TBP.

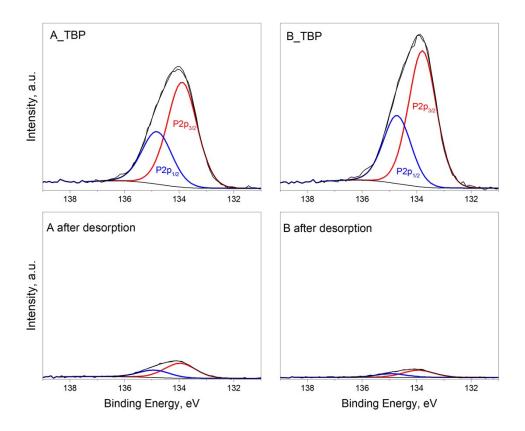


Figure S4. P2p XPS spectra of samples A and B before and after kerosene desorption of TBP.