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1 Phosphorus chemical potential limits

The chemical potential of phosphorus (µP ) depends on the operating temperature and partial pressure of
phosphorus, as described by the equation:

µP =
1

4

[
Etot

P4
+ µ̃P4

(T, p0) + kBT ln

(
pP4

p0

)]
(1)

Here, µ̃P4
, the temperature-dependent chemical potential change at standard pressure, can be obtained

from the JANAF Thermochemical Tables [1]. A detailed analysis of the chemical potential of phosphorus as a
function of temperature and pressure is provided in [2]. In experiments aiming to prepare Ni2P, the chemical
potential of phosphorus is controlled by varying temperature and the concentration of phosphorus [3, 4].

In the present study, the lower (P-poor) and upper (P-rich) µP limits are set at 0 K such that the chemical
potential of phosphorus will lead to the formation of Ni2P. Below the P-poor limit, the chemical potential of
phosphorus would lead to the formation of solid Ni, while above the P-rich limit, it would lead to the formation
of P4.

The following thermodynamic relationship is used to describe the formation of Ni2P:

Ebulk
Ni2P

3
= 2× Ebulk

Ni

4
+

Ebulk
P

4
−∆Hf (2)

Ebulk
Ni2P

3
= 2× µNi + µP (3)

µlowerlimit
P =

Ebulk
Ni2P

3
− 2× Ebulk

Ni

4
= −7.89 eV (4)

µupperlimit
P = µP(0K) = −4.22 eV (5)

In the above, ∆Hf is the heat of formation [5], µlowerlimit
P and µupperlimit

P are defined as the P-poor and
P-rich limits of the chemical potential of phosphorus. The total energies used in these calculations are Ebulk

Ni2P
=

−53.38 eV, Ebulk
Ni = −19.81 eV [6], and Emolecule

P4
= −17.74 eV [7]. It should be noted that if the energy of the

crystalline P4 (Ebulk
P4

= −21.50 eV[8]) is used instead of molecular energy, the µupperlimit
P = −5.37 eV.

Other expressions and values used to obtain the µP limits include the zero-point energy EZPE
P4

= 0.169 eV

[9], µ̃P4
(0K) = 0.69 eV [1], and Etot

P4
= Emolecule

P4
+ EZPE

P4
.

2 Calculation of Gibbs Free energy

The differential Gibbs free energy (∆Gdiff (n), eq. (13)) as a function of hydrogen coverage (n) is obtained using
the free energy of vibrations in the systems (Fvib, eq. (8)). Evib(T, ω) and Svib(T, ω) are energy and entropy of
vibrations in the system as a function of temperature and frequency. SX represents the entropy of vibrations of
species X, where nH stands for the number of adsorbed hydrogens at coverage n. The configurational entropy
SnH is neglected in the calculations. The below formalism is adapted from [10–12].
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Evib(T, ω) = ℏω
(
1

2
+

1
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)
(6)

Svib(T, ω) = k

[
βℏω

eβℏω − 1
− ln(1− e−βℏω)

]
(7)

Fvib(T ) =
∑
ω

Evib(T, ω)− TSvib(T, ω) (8)

∆GnH =
[
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]
−
[
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2

(
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(9)
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nH

2
EH2

]
+

[
Fvib(slab+nH) −

nH

2
Fvib(H2)

]
(10)

−
[
TSnH − nH

2
TSH2

]
∆GnH = ∆Eads +∆Fvib − T∆SH (11)

∆G(n) =
∆GnH

nH
(12)

∆Gdiff (n) = ∆GnH −∆G(n−1)H (13)

2.1 Vibration energy values

Table 1: Vibrational free energy (eq. (8)) at 298 K, with dispersion corrections in parentheses. Ni-Ni bridge and
Ni-top sites are unstable for 1H adsorption. Ni-Ni bridge values average 2H and 3H coverages; Ni-top values are
from 2H coverage (one H at the hollow site, one at Ni-top). ”adatom P - nH” indicates n hydrogens on adatom
P.

Adsorption site Vibration Free energy Fvib(298K)(eV)
Ni3P2 Ni3P2 + 4P*

Ni-Ni bridge 0.18 (0.18) -
Ni hollow 0.15 (0.15) -
Ni top 0.13 0.26
P top 0.19 0.29
Ni-P bridge 0.17 (0.17) 0.28
adatom P - 0H - 0.12 (0.06)
adatom P - 1H - 0.31 (0.29)
adatom P - 2H - 0.50 (0.50)
adatom P - 3H - 0.71 (0.73)
* Vibrations of phosphorus adatoms are included.
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3 Adsorption results

3.1 Adsorption coverage visualisation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Hydrogen adsorption coverage configurations a) 3H(0), b) 4H(0), c) 4H(I), d) 5H(0), e) 5H(I), f)
6H(0), g) 6H(I), h) 6H(II) on Ni3P2 (pristine) surface termination. The colours red, blue and white represent
Ni, P and H atoms, respectively.

(a) (b) (c) (d)

Figure 2: Hydrogen adsorption coverage configurations a) 6H(0), b) 7H(0), c) 7H(I), d)8H(0) on Ni3P2+4P
(reconstructed) surface termination. The colours red, blue and white represent Ni, P and H atoms, respectively.

3.2 Adsorption energies in the literature

Table 2: Adsorption energy (∆Eads) and Gibbs Free energy (∆G(1)) of single H atom adsorption without (with)
dispersion correction from various references.

Ads. site Ni3P2

∆Eads(eV) ∆G(eV)
Ni hollow -0.65 [13], -0.64 [14] -0.47 [15], -0.49 [16]

P top 0.09 [13], 1.09 [14] -
Ni-P bridge -0.05 [13] -
Ads. site Ni3P2+4P

∆Eads(eV) ∆G(eV)
P top 0.15 [13] -
Ni top -0.04 [13] 0.12 [16]

Ni-P bridge 0.23 [13] -
adatom P -0.22 [13] 0.01-0.14 [15], 0.06 [16]

4 Reaction Calculations

The results of hydrogen evolution (HER) reaction calculations are provided below which are discussed in the
main text. The data for all the reaction calculations presented in the main and supplementary text is available
[17].
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4.1 Reaction pathway visualisations

(a)

(b)

Figure 3: Volmer-Heyrovsky reaction pathway P4V H

on Ni3P2 via surface H coverages (a) 4 to 5 and (b) 5
to 4.

(a)

(b)

(c)

Figure 4: Volmer-Volmer-Tafel reaction pathway
R6V V T on Ni3P2+4P via surface H coverages (a) 6
to 7, (b) 7 to 8 and (c) 8 to 6.

4.2 Reaction and activation energy of Volmer, Tafel and Heyrovsky steps

Table 3: Reaction (Er) and activation (Ea) energies of Volmer, Tafel and Heyrovsky mechanisms, without
proton-corrections, at various coverages on pristine (Ni3P2) and reconstructed (Ni3P2+4P) surface terminations.
The most (least) favourable step is indicated by green (red) for each reaction.

Configurations Energy (eV)
Initial Final Er Ea

P
ri
st
in
e

V
ol
m
er

3H(0) 4H(0) 0.14 0.51
4H(0) 5H(I) 0.68 0.72
4H(0) 5H(0) 0.67 0.71
5H(I) 6H(I) 0.72 0.80
5H(I) 6H(II) 0.56 0.67

T
af
el 5H(0) 3H(0) 0.47 0.47

6H(I) 4H(0) -0.19 0.05
6H(II) 4H(I) 0.43 0.45

H
ey 5H(I) 4H(0) 0.46 0.62

5H(0) 4H(0) 0.56 0.64

R
ec
on

st
ru
ct
ed

V

6H(0) 7H(I) 0.11 0.28
6H(0) 7H(0) -0.25 0.03
7H(0) 8H(0) -0.59 0.16

T 8H(0) 6H(0) 0.28 1.38

H

7H(I) 6H(0) -0.22 0.40
7H(0) 6H(0) -0.22 0.66
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Figure 5: The bare reaction and activation energies of Volmer, Tafel and Heyrovsky steps of HER are plotted
to investigate the Bell–Evans–Polanyi (BEP) principle. The BEP linear relation is observed for the Tafel steps
of Ni3P2 and Volmer steps of both Ni2P3 and Ni3P2+4P terminations. Due to insufficient data, the remaining
reaction steps could not be assessed.

4.3 HER energy profiles
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Figure 6: Hydrogen evolution reaction energy profile on the a), b), c) pristine (Ni3P2) and d) reconstructed
(Ni3P2+4P) surface terminations of Ni2P(0001). a), b) depicts the Volmer-Volmer-Tafel (VVT) cycle and c),
d) depicts the Volmer-Heyrovsky (VH) cycle. a) Adsorption coverage transitions from 4H(0) to 6H(I) through
5H(I), ending at 4H(0) coverage with reaction (Er)/activation (Ea) energy 0.68/0.95 eV. b) Adsorption coverage
transitions from 4H(0) to 6H(II) through 5H(I), ending at 4H(I) coverage with Er/Ea equals 1.20/1.22 eV. c)
Adsorption coverage transitions from 4H(0) to 5H(0) during the Volmer steps. Beginning with 5H(0) coverage,
the system concludes at 4H(0) coverage with Er/Ea equals 0.74/0.82 eV. d) Adsorption coverage transitions
from 6H(0) to 7H(0) during the Volmer steps. Beginning with 7H(0) coverage, the system concludes at 6H(0)
coverage with Er/Ea equals 0.06/0.93 eV.
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4.4 Reaction and activation energies in the literature

Table 4: Activation (Ea) and reaction (Er) energy of Volmer (Vol), Tafel (Taf) steps (React) of hydrogen
evolution reaction (HER). Ni hollow (Ni hol) and Ni-P bridge (Ni-P B) adsorption sites are specified.

React Surf coverage transition Ea (eV) Er (eV)
Vol 0H→1H (Ni hol) 0.01 [14] -0.16 [14]
Vol 1H (Ni hol)→2H (Ni hol) 0.32 [14] -0.48 [14]
Vol 1H (Ni hol)→2H (Ni-P B) 0.15 [14] -0.47 [14]
Vol 0H→1H (Ni hol) - -0.54 [18]
Vol 1H (Ni hol)→2H (Ni-P B) - 0.09 [18]
Taf 2H (Ni hol, Ni-P B)→0H - 0.45 [18]
Vol 0H→1H (Ni hol) - -0.12 [12]
Vol 1H (Ni hol)→2H (Ni-P B) - 0.41 [12]
Taf 2H (Ni hol, Ni-P B)→0H 0.32 [12] -0.29 [12]

5 Average Gibbs free energy of adsorption data

The average Gibbs free energy data discussed in the word is provided below. The complete dataset for the
hydrogen adsorption calculations and corresponding analysis code is available [19].

Table 5: Average Gibbs free energy ∆G(n) (eq. (12)) as a function of adsorption coverage n on pristine (Ni3P2)
surface termination of Ni2P(0001).

n ∆G(n) Adsorption sites
1 -0.4 1@hol
1 0.22 1@NiPbrdg
1 0.36 1@Ptop
2 -0.39 2@hol
2 -0.39 2@hol
2 -0.05 1@NiPbrdg-1@hol
2 -0.05 1@NiPbrdg-1@hol
2 -0.03 2@NiNibrdg
2 -0.01 1@Ptop-1@hol
2 -0.01 1@Ptop-1@hol
2 -0.01 1@hol-1@Ptop
2 0.03 1@Nitop-1@hol
2 0.03 1@hol-1@Nitop
2 0.31 1@NiPbrdg-1@Ptop
2 0.4 2@Ptop
3 -0.38 3@hol
3 -0.18 2@hol-1@NiPbrdg
3 -0.14 1@hol-2@NiNibrdg
3 0.05 2@NiNibrdg-1@NiPbrdg
3 0.12 3@NiNibrdg
4 -0.37 4@hol
4 -0.21 3@hol-1@NiPbrdg-1
4 -0.21 3@hol-1@NiPbrdg-2
5 -0.24 4@hol-1@NiPbrdg-5
5 -0.23 4@hol-1@NiPbrdg-1
5 -0.23 4@hol-1@NiPbrdg-2
5 -0.23 4@hol-1@NiPbrdg-3
5 -0.23 4@hol-1@NiPbrdg-4
5 -0.23 3@hol-2@NiNibrdg-1
5 -0.23 3@hol-2@NiNibrdg-2
5 -0.23 3@hol-2@NiNibrdg-3
5 -0.2 4@hol-1@Ptop
6 -0.14 3@hol-2@NiNibrdg-1@NiPbrdg-1
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Table 5 – continued
n ∆G(n) Adsorption sites
6 -0.14 3@hol-2@NiNibrdg-1@NiPbrdg-2
6 -0.14 3@hol-2@NiNibrdg-1@NiPbrdg-3
6 -0.14 3@hol-2@NiNibrdg-1@NiPbrdg-4
6 -0.14 4@hol-2@NiPbrdg-2
6 -0.14 4@hol-2@NiPbrdg-3
6 -0.14 4@hol-2@NiPbrdg-4
6 -0.14 4@hol-2@NiPbrdg-5
6 -0.13 3@hol-2@NiNibrdg-1@NiPbrdg-5
6 -0.13 4@hol-2@NiPbrdg-1
6 -0.13 4@hol-2@NiPbrdg-7
6 -0.13 4@hol-2@NiPbrdg-8
6 -0.13 2@hol-4@NiNibrdg
6 -0.12 3@hol-2@NiNibrdg-1@Ptop-1
6 -0.12 3@hol-2@NiNibrdg-1@Ptop-2
6 -0.12 3@hol-3@NiNibrdg
6 -0.12 4@hol-2@NiPbrdg-6
6 -0.12 4@hol-1@Ptop-1@NiPbrdg-1
6 -0.11 4@hol-1@Ptop-1@NiPbrdg
6 -0.09 4@hol-1@Ptop-1@NiPbrdg-2
6 -0.09 4@hol-1@Ptop-1@NiPbrdg-3
6 -0.09 4@hol-1@Ptop-1@Ptop
7 -0.07 2@hol-4@NiNibrdg-1@NiPbrdg
7 -0.07 1@hol-6@NiNibrdg
7 -0.07 2@hol-4@NiNibrdg-1@NiPbrdg-1
7 -0.07 3@hol-2@NiNibrdg-2@NiPbrdg-1
7 -0.07 4@hol-3@NiPbrdg-2
7 -0.07 4@hol-3@NiPbrdg-3
7 -0.06 2@hol-4@NiNibrdg-1@NiPbrdg-2
7 -0.05 2@hol-5@NiNibrdg
7 -0.05 2@hol-4@NiNibrdg-1@NiPbrdg-3
7 -0.05 3@hol-2@NiNibrdg-2@NiPbrdg-2
7 -0.05 4@hol-3@NiPbrdg-1
8 -0.02 4@hol-4@NiPbrdg-3
8 -0.01 8@NiNibrdg
8 -0.0 7@NiNibrdg-1@hol
8 0.01 4@hol-4@NiPbrdg-1
8 0.02 4@hol-4@NiPbrdg-2
9 0.02 4@hol-5@NiPbrdg-3
9 0.03 4@hol-5@NiPbrdg-1
9 0.03 4@hol-5@NiPbrdg-2
9 0.03 4@hol-5@NiPbrdg-5
9 0.03 4@hol-5@NiPbrdg-6
9 0.03 4@hol-5@NiPbrdg-8
9 0.03 8@NiNibrdg-1@NiPbrdg-2
9 0.04 9@NiNibrdg
9 0.04 8@NiNibrdg-1@NiPbrdg-1
9 0.04 8@NiNibrdg-1@Ptop
9 0.04 4@hol-5@NiPbrdg-4
9 0.04 4@hol-5@NiPbrdg-7
9 0.04 4@hol-5@NiPbrdg-9
10 0.06 8@NiNibrdg-2@NiPbrdg-1
10 0.06 8@NiNibrdg-2@NiPbrdg-2
10 0.06 4@hol-6@NiPbrdg-2
10 0.06 4@hol-6@NiPbrdg-5
10 0.06 4@hol-6@NiPbrdg-6
10 0.06 4@hol-6@NiPbrdg-7
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Table 5 – continued
n ∆G(n) Adsorption sites
10 0.06 4@hol-6@NiPbrdg-8
10 0.07 4@hol-6@NiPbrdg-1
10 0.07 8@NiNibrdg-2@NiPbrdg-3
10 0.07 4@hol-6@NiPbrdg-3
10 0.07 4@hol-6@NiPbrdg-4
10 0.07 4@hol-6@NiPbrdg-9
10 0.08 9@NiNibrdg-1@NiPbrdg
10 0.08 9@NiNibrdg-1@Ptop
11 0.09 8@NiNibrdg-3@NiPbrdg-1
11 0.1 4@hol-7@NiPbrdg-1
12 0.11 8@NiNibrdg-4@NiPbrdg-1
12 0.13 4@hol-8@NiPbrdg-1
13 0.13 8@NiNibrdg-5@NiPbrdg-1
13 0.15 4@hol-9@NiPbrdg-1
13 0.15 4@hol-9@NiPbrdg-2
13 0.15 4@hol-9@NiPbrdg-3
13 0.15 4@hol-9@NiPbrdg-4
13 0.16 12@NiNibrdg-1@NiPbrdg-1
14 0.16 8@NiNibrdg-6@NiPbrdg-1
14 0.18 12@NiNibrdg-2@NiPbrdg-1
15 0.19 8@NiNibrdg-7@NiPbrdg-1
15 0.21 12@NiNibrdg-3@NiPbrdg-1
16 0.2 8@NiNibrdg-8@NiPbrdg-1
17 0.22 8@NiNibrdg-9@NiPbrdg-1
18 0.24 8@NiNibrdg-10@NiPbrdg-1
19 0.26 8@NiNibrdg-11@NiPbrdg-1
20 0.27 8@NiNibrdg-12@NiPbrdg-1

Table 6: Average Gibbs free energy ∆G(n) (eq. (12)) as a function of adsorption coverage n on the reconstructed
(Ni3P2+4P) surface termination of Ni2P(0001).

n ∆G(n) Adsorption sites
1 0.08 1@0P
1 0.21 1@Nitop
1 0.44 1@Ptop
1 0.52 1@NiPbrdg
2 0.11 2@PH2
2 0.15 2@0P
2 0.26 2@Nitop-1
2 0.26 2@Nitop-2
3 0.13 2@PH2-1@0P
3 0.17 3@PH3
3 0.18 3@0P
4 0.14 4@PH2
4 0.16 2@PH2-2@0P
4 0.21 4@0P
4 0.36 2@PH2-2@Ptop
4 0.37 2@PH2-2@NiPbrdg-1
4 0.4 2@PH2-2@NiPbrdg-2
5 0.18 3@0P-2@PH2
5 0.18 3@PH3-2@PH2
5 0.19 4@PH2-1@0P
5 0.28 4@0P-1@Ptop
5 0.32 4@0P-1@NiPbrdg
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Table 6 – Continued from previous page
n ∆G(n) Adsorption sites
6 0.15 6@PH2
6 0.16 4@PH2-2@0P
6 0.2 6@PH3
7 0.16 6@PH2-1@0P
7 0.18 3@PH3-4@PH2
7 0.20 6@PH2-1@NiPbrdg
8 0.16 8@PH2
8 0.18 3@PH3-4@PH2-1@0P
8 0.19 6@PH3-2@PH2
8 0.2 6@PH3-2@0P
9 0.17 3@PH3-6@PH2
9 0.19 6@PH3-2@PH2-1@0P
9 0.22 9@PH3
10 0.2 6@PH3-4@PH2
10 0.21 9@PH3-1@0P
10 0.25 8@PH2-1@Ptop-1@NiPbrdg-1
10 0.25 8@PH2-1@Ptop-1@NiPbrdg-2
10 0.26 8@PH2-2@NiPbrdg
11 0.22 9@PH3-2@PH2
11 0.3 8@PH2-3@Ptop
11 0.3 8@PH2-3@NiPbrdg-1
11 0.3 8@PH2-3@NiPbrdg-2
12 0.24 12@PH3
12 0.29 6@PH2-3@PH3-2@Ptop-1@NiPbrdg
12 0.34 8@PH2-4@Ptop
12 0.34 8@PH2-4@NiPbrdg-1
12 0.34 8@PH2-4@NiPbrdg-2
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