In Silico Validation of Allosteric Inhibitors Targeting Zika Virus NS2B-NS3 Proteases

Yeng-Tseng Wang,^{a,b,c and d*} Yuan-Chin Hsieh^e and Tin-Yu Wu^f

Table S1. Comparison of GaMD simulation time periods for modeling protein binding pocket conformational changes with and without inhibitors, based on the GaMD calculation method described by Miao Y et al. (DOI: 10.1002/wcms.1521). The table shows the recommended simulation time periods for proteins of various sizes, including the Zika NS2B-NS3 protease (~210 amino acid residues), which requires a 1000 ns production GaMD simulation time period for reliable modeling of conformational changes.

TITLE	Protein/amino	Production	DOI
	residues	GaMD	
	number	simulation	
		time period	
Remarkable	Homology	100 ns	doi.org/10.1111/cbdd.13170
similarity in	modelling		
Plasmodium	based on the		
falciparum and	two proteins		
Plasmodium vivax	(PDB ID:		
geranylgeranyl	3MAV and		
diphosphate	3PH7)/~378		
synthase			
dynamics and its			
implication for			
antimalarial drug			
design			
Active Site	apo Alkbh5	200 ns	10.1016/j.bpj.2018.10.004
Breathing of	(PDB ID:		
Human Alkbh5	4NJ4)/~222		
Revealed by			
Solution NMR and			
Accelerated			
Molecular			
Dynamics			

Energy landscape	S. aureus	250 ns	10.1016/j.jsb.2019.05.004
of the domain	MnaA-UDP		
movement in	co-structure		
Staphylococcus	(PDB ID:		
aureus UDP-N-	5ENZ) / ~376		
acetylglucosamine			
2-epimerase			
Schisandrin C	murine Keap1	500 ns	10.1002/ptr.6271
targets Keap1 and	in complex		
attenuates	with		
oxidative stress by	RA839(PDB		
activating Nrf2	ID: 5CGJ) /		
pathway in Ang II-	~289		
challenged			
vascular			
endothelium			
Structural	BAK1 kinase	500 ns	10.1016/j.bpj.2019.12.026
Consequences of	domain (PDB		
Multisite	ID: 3TL8,		
Phosphorylation in	chain A)/ ~300		
the BAK1 Kinase			
Domain			
Casein kinase 1	CASEIN	500 ns	10.7554/eLife.52343
dynamics underlie	KINASE (PDB		
substrate	ID: 1CKJ,		
selectivity and the	1CKJ, 6PXN,		
PER2 circadian	6PXN, 1CKJ		
phosphoswitch	and 6PXN)/		
	~600		
Elucidation of	SARS-CoV-2	1000 and	10.1021/acs.jcim.1c00140
Cryptic and	Main Protease	200 ns	
Allosteric Pockets	(PDB ID:		
within the SARS-	6LU7)/~306		
CoV-2 Main			
Protease			
Probing the	M.tuberculosis	900 ns	doi/10.1128/aac.02476-19
Molecular	RNAP with		
Mechanism of	rifampin (PDB		

Rifampin	ID 5UHC)/		
Resistance	~3000		
Caused by the			
Point Mutations			
S456L and D441V			
on Mycobacterium			
tuberculosis RNA			
Polymerase			
through Gaussian			
Accelerated			
Molecular			
Dynamics			
Simulation			
Dynamics and	Human	100 ns	10.1021/acs.biochem.9b01001
Location of the	Microsomal		
Allosteric	P450 3A4		
Midazolam Site in	(PDB ID:		
Cytochrome	1TQN)/ ~371		
P4503A4 in Lipid			
Nanodiscs			
This manuscript	Zika NS2B-	1000 ns	This manuscript
	NS3 protease		
	(PDB ID:		
	5T1V)/ ~210		

• Reference to Miao Y et al. (DOI: 10.1002/wcms.1521)

Table S2. Coordinates of the atoms within the 5 Å cluster system surrounding the inhibitor-01 (StateII) of the Zika NS2B-NS3 protease. The coordinates are provided in Angstroms (Å) and represent the atoms' positions in the protein's three-dimensional structure.

ATOM	1 N UNL	1	19.877 51.789 62.95	5 1.00 0.00	Ν	
АТОМ	2 C UNL	1	18.392 50.889 66.65	1 1.00 0.00	С	
АТОМ	3 O UNL	1	20.599 51.197 60.19	4 1.00 0.00	0	
АТОМ	4 C1 UNL	1	19.318 51.931 66.59	5 1.00 0.00	С	
АТОМ	5 O1 UNL	1	18.937 49.715 60.02	2 1.00 0.00	0	
АТОМ	6 C2 UNL	1	19.830 52.306 65.35	8 1.00 0.00	С	
АТОМ	7 O2 UNL	1	18.670 47.761 62.13	1 1.00 0.00	0	
АТОМ	8 C3 UNL	1	19.410 51.633 64.20	3 1.00 0.00	С	
АТОМ	9 O3 UNL	1	12.525 47.524 63.92	0 1.00 0.00	0	
АТОМ	10 C4 UNL	1	18.625 50.537 64.27	3 1.00 0.00	С	
АТОМ	11 O4 UNL	1	13.263 49.929 62.85	7 1.00 0.00	0	
АТОМ	12 C5 UNL	1	18.078 50.119 65.51	1 1.00 0.00	С	
АТОМ	13 O5 UNL	1	14.463 45.701 64.86	3 1.00 0.00	0	
АТОМ	14 C6 UNL	1	19.305 50.766 62.16	5 1.00 0.00	С	
АТОМ	15 C7 UNL	1	18.486 49.962 62.97	3 1.00 0.00	С	
АТОМ	16 C8 UNL	1	19.742 50.528 60.78	6 1.00 0.00	С	
АТОМ	17 C9 UNL	1	19.211 49.565 58.62	3 1.00 0.00	С	
АТОМ	18 C10 UNL	1	17.953 48.585 62.66	7 1.00 0.00	С	
АТОМ	19 C11 UNL	1	16.587 48.366 63.23	9 1.00 0.00	С	
АТОМ	20 C12 UNL	1	16.256 47.119 63.88	1 1.00 0.00	С	
АТОМ	21 C13 UNL	1	14.874 46.867 64.21	4 1.00 0.00	С	
АТОМ	22 C14 UNL	1	13.896 47.797 63.85	5 1.00 0.00	С	
АТОМ	23 C15 UNL	1	14.228 49.062 63.28	5 1.00 0.00	С	
АТОМ	24 C16 UNL	1	15.612 49.354 63.12	2 1.00 0.00	С	
АТОМ	25 C17 UNL	1	15.220 45.311 65.98	0 1.00 0.00	С	
АТОМ	26 C18 UNL	1	12.462 49.561 61.76	3 1.00 0.00	С	
АТОМ	27 CI UNL	1	17.834 50.318 68.222	1.00 0.00	CL	
АТОМ	28 H UNL	1	19.506 52.532 67.48	0 1.00 0.00	Н	
АТОМ	29 H1 UNL	1	20.575 53.086 65.22	5 1.00 0.00	н	
АТОМ	30 H2 UNL	1	17.696 49.114 65.66	6 1.00 0.00	н	
ΑΤΟΜ	31 H3 UNL	1	20.553 52.466 62.63	3 1.00 0.00	н	
АТОМ	32 H4 UNL	1	18.556 48.764 58.25	9 1.00 0.00	н	
АТОМ	33 H5 UNL	1	20.225 49.160 58.51	8 1.00 0.00	н	

АТОМ	34 H6 UNL	1	19.217 50	.516 58.077	1.00 0.00	н	
ATOM	35 H7 UNL	1	17.004 46	.335 63.946	1.00 0.00	Н	
ATOM	36 H8 UNL	1	15.924 50	.340 62.790	1.00 0.00	Н	
ATOM	37 H9 UNL	1	12.480 46	.552 63.949	1.00 0.00	Н	
ATOM	38 H10 UNL	1	15.094 46	.137 66.691	1.00 0.00	Н	
ATOM	39 H11 UNL	1	16.288 45	.219 65.748	1.00 0.00	Н	
ATOM	40 H12 UNL	1	14.840 44	.345 66.335	1.00 0.00	Н	
ATOM	41 H13 UNL	1	11.888 48	.667 62.033	1.00 0.00	Н	
ATOM	42 H14 UNL	1	13.104 49	.337 60.903	1.00 0.00	Н	
ATOM	43 H15 UNL	1	11.748 50	.353 61.506	1.00 0.00	Н	
ATOM	44 CA LYS	138	17.323 56	67.047	1.00 0.00	С	
ATOM	45 C LYS	138	18.060 56	.065 66.060	1.00 0.00	С	
ATOM	46 O LYS	138	13.378 52	.809 66.779	1.00 0.00	Н	
ATOM	57 N GLN	139	13.219 54	.231 61.318	1.00 0.00	н	
ATOM	72 N ASP	140	20.029 56	6.816 63.275	1.00 0.00	Ν	
ATOM	73 CB ASP	140	22.479 56	6.740 62.937	1.00 0.00	С	
ATOM	74 CG ASP	140	22.690 56	6.642 64.474	1.00 0.00	С	
ATOM	75 OD1 ASP	140	22.858 55	5.549 64.981	1.00 0.00	0	
ATOM	76 H ASP	140	19.314 57	.437 63.626	1.00 0.00	н	
ATOM	77 HB2 ASP	140	22.542 55	6.737 62.516	1.00 0.00	н	
ATOM	78 CG LEU	141	18.574 55	5.115 59.509	1.00 0.00	С	
ATOM	79 CD1 LEU	141	17.428 54	.221 59.278	1.00 0.00	С	
ATOM	80 CD2 LEU	141	19.839 54	.538 58.948	1.00 0.00	С	
ATOM	81 HG LEU	141	18.712 55	5.156 60.589	1.00 0.00	Н	
ATOM	82 HD11 LEU	141	17.292 54	.128 58.200	1.00 0.00	Н	
ATOM	83 HD12 LEU	141	17.652 53	.268 59.756	1.00 0.00	Н	
ATOM	84 HD21 LEU	141	19.660 54	.550 57.873	1.00 0.00	Н	
ATOM	85 HD22 LEU	141	20.740 55	.096 59.204	1.00 0.00	Н	
ATOM	86 HD23 LEU	141	20.011 53	.505 59.248	1.00 0.00	Н	
ATOM	87 CE2 TRP	148	16.017 52	.309 55.339	1.00 0.00	С	
ATOM	88 NE1 TRP	148	15.440 52	2.627 56.496	1.00 0.00	Ν	
ATOM	89 CZ2 TRP	148	16.870 51	.306 54.939	1.00 0.00	С	
ATOM	90 CH2 TRP	148	17.301 51	.292 53.577	1.00 0.00	С	
ATOM	91 HE1 TRP	148	15.541 52	.129 57.369	1.00 0.00	Н	
ATOM	92 HZ2 TRP	148	17.268 50	.646 55.697	1.00 0.00	н	
ATOM	93 HH2 TRP	148	18.037 50).581 53.234	1.00 0.00	н	
ATOM	94 CG LEU	150	13.009 49	9.104 56.408	1.00 0.00	С	
ATOM	95 CD1 LEU	150	13.200 49	0.034 57.914	1.00 0.00	С	

ATOM	96 CD2 LEU	150	14.375 48.876	55.791	1.00	0.00	C
ATOM	97 HB2 LEU	150	10.945 48.604	56.623	1.00	0.00	Н
ATOM	98 HG LEU	150	12.767 50.161	56.304	1.00	0.00	н
ATOM	99 HD11 LEU	150	13.825 49.869	58.231	1.00	0.00	Н
ATOM	100 HD12 LEU	150	12.227 49.264	58.349	1.00	0.00	Н
ATOM	101 HD13 LEU	150	13.579 48.068	58.247	1.00	0.00	Н
ATOM	102 HD21 LEU	150	14.790 47.885	55.974	1.00	0.00	Н
ATOM	103 HD23 LEU	150	15.140 49.612	56.034	1.00	0.00	Н
ATOM	104 CB THR	183	20.338 47.514	1 71.015	1.00	0.00	С
ATOM	105 CG2 THR	183	19.011 47.563	8 70.273	1.00	0.00	C
ATOM	106 OG1 THR	183	20.788 48.81	71.044	1.00	0.00	0
ATOM	107 HG1 THR	183	20.911 49.064	70.126	1.00	0.00	Н
ATOM	108 HG21 THR	183	18.127 47.931	70.793	1.00	0.00	н
ATOM	109 HG22 THR	183	19.151 48.050	69.308	1.00	0.00	н
ATOM	110 HG23 THR	183	18.665 46.559	70.031	1.00	0.00	Н
ATOM	111 CA ASP	185	15.851 49.840) 72.675	1.00	0.00	C
ΑΤΟΜ	112 CB ASP	185	15.830 50.688	3 71.360	1.00	0.00	C
ΑΤΟΜ	113 CG ASP	185	16.648 51.92	7 71.458	1.00	0.00	С
ATOM	114 OD1 ASP	185	17.827 51.927	71.128	1.00	0.00	0
ATOM	115 OD2 ASP	185	16.134 52.988	71.961	1.00	0.00	0
ΑΤΟΜ	116 H ASP	185	17.973 50.062	72.578	1.00	0.00	н
ΑΤΟΜ	117 HB2 ASP	185	16.220 50.053	70.565	1.00	0.00	н
ΑΤΟΜ	118 HB3 ASP	185	14.793 50.964	71.175	1.00	0.00	Н
ΑΤΟΜ	119 HA3 GLY	186	14.517 45.969	71.605	1.00	0.00	Н
ΑΤΟΜ	120 N ASP	187	16.422 44.769	70.409	1.00	0.00	Ν
ATOM	121 CA ASP	187	17.211 43.819	69.626	1.00	0.00	C
ATOM	122 C ASP	187	17.880 44.449	68.420	1.00	0.00	С
ATOM	123 O ASP	187	17.350 45.474	67.902	1.00	0.00	0
ATOM	124 CB ASP	187	16.472 42.496	69.238	1.00	0.00	С
ATOM	125 CG ASP	187	15.719 41.739	9 70.383	1.00	0.00	С
ATOM	126 OD2 ASP	187	14.501 41.584	70.261	1.00	0.00	0
ATOM	127 H ASP	187	15.635 45.139	69.895	1.00	0.00	Н
ATOM	128 HB2 ASP	187	15.709 42.687	68.483	1.00	0.00	Н
ATOM	129 HB3 ASP	187	17.112 41.762	68.748	1.00	0.00	Н
ATOM	130 N ILE	188	18.905 43.808	67.902	1.00	0.00	Ν
ATOM	131 CA ILE	188	19.752 44.331	66.833	1.00	0.00	С
ATOM	132 C ILE	188	20.684 43.290	66.188	1.00	0.00	С
ΑΤΟΜ	133 CB ILE	188	20.618 45.584	67.258	1.00	0.00	С

ATOM	134 CG1 ILE	188 21.277	46.479 66.154	1.00 0.00	С
ATOM	135 CD1 ILE	188 20.160	47.205 65.302	1.00 0.00	С
ATOM	136 H ILE	188 19.220	42.913 68.247	1.00 0.00	н
ATOM	137 HA ILE	188 19.075	44.691 66.059	1.00 0.00	Н
ATOM	138 HB ILE	188 20.020	46.281 67.845	1.00 0.00	н
ATOM	139 HG12 ILE	188 21.884	47.249 66.630	1.00 0.00	Н
ATOM	140 HD11 ILE	188 20.304	48.283 65.374	1.00 0.00	н
ATOM	141 HD12 ILE	188 20.272	46.807 64.293	1.00 0.00	н
ATOM	142 HD13 ILE	188 19.227	47.038 65.840	1.00 0.00	н
ATOM	143 H GLY	210 20.693	44.340 64.532	1.00 0.00	Н
ATOM	144 HG13 VAL	211 18.532	47.692 53.757	1.00 0.00	Н
ATOM	145 C ILE	212 18.431	45.372 56.298	1.00 0.00	С
ATOM	146 O ILE	212 18.200	45.217 57.478	1.00 0.00	0
ATOM	147 HA ILE	212 16.476	45.375 55.512	1.00 0.00	Н
ATOM	148 N GLY	213 19.550	45.952 55.886	1.00 0.00	Ν
ATOM	149 CA GLY	213 20.531	46.490 56.844	1.00 0.00	С
ATOM	150 C GLY	213 21.637	47.280 56.158	1.00 0.00	С
ATOM	151 O GLY	213 21.567	47.592 54.930	1.00 0.00	0
ATOM	152 H GLY	213 19.749	45.899 54.897	1.00 0.00	Н
ATOM	153 HA2 GLY	213 20.044	47.052 57.640	1.00 0.00	Н
ATOM	154 HA3 GLY	213 20.920	45.603 57.344	1.00 0.00	Н
ATOM	155 N LEU	214 22.633	47.604 56.988	1.00 0.00	Ν
ATOM	156 CA LEU	214 23.639	48.637 56.662	1.00 0.00	С
ATOM	157 C LEU	214 24.899	48.251 57.363	1.00 0.00	С
ΑΤΟΜ	158 O LEU	214 24.971	48.154 58.595	1.00 0.00	0
ΑΤΟΜ	159 CB LEU	214 23.129	50.048 57.057	1.00 0.00	С
ΑΤΟΜ	160 CG LEU	214 21.950	50.615 56.170	1.00 0.00	С
ATOM	161 CD1 LEU	214 21.529	51.943 56.724	1.00 0.00	С
ΑΤΟΜ	162 CD2 LEU	214 22.555	50.916 54.818	1.00 0.00	С
ΑΤΟΜ	163 H LEU	214 22.502	47.390 57.967	1.00 0.00	Н
ΑΤΟΜ	164 HA LEU	214 23.810	48.512 55.593	1.00 0.00	н
ΑΤΟΜ	165 HB2 LEU	214 22.781	50.006 58.089	1.00 0.00	Н
ΑΤΟΜ	166 HB3 LEU	214 23.985	50.722 57.080	1.00 0.00	Н
ATOM	167 HG LEU	214 21.089	49.950 56.108	1.00 0.00	Н
ATOM	168 HD11 LEU	214 20.888	51.816 57.597	1.00 0.00	Н
ATOM	169 HD12 LEU	214 22.460	52.419 57.029	1.00 0.00	н
ATOM	170 HD13 LEU	214 21.116	52.445 55.849	1.00 0.00	н
ATOM	171 HD23 LEU	214 21.763	51.378 54.228	1.00 0.00	н

ATOM	172 CA ASN	217	24.725	50.673	61.136	1.00	0.00	С
ATOM	173 C ASN	217	23.573	49.757	61.633	1.00	0.00	С
ATOM	174 O ASN	217	22.869	50.214	62.500	1.00	0.00	0
ATOM	175 CB ASN	217	24.335	51.789	60.211	1.00	0.00	С
ATOM	176 CG ASN	217	23.802	52.904	61.155	1.00	0.00	С
ATOM	177 ND2 ASN	217	22.529	53.111	61.153	1.00	0.00	Ν
ATOM	178 OD1 ASN	217	24.577	53.574	61.795	1.00	0.00	0
ATOM	179 HA ASN	217	25.091	51.136	62.053	1.00	0.00	н
ATOM	180 HB2 ASN	217	25.145	52.251	59.646	1.00	0.00	Н
ATOM	181 HB3 ASN	217	23.651	51.541	59.399	1.00	0.00	Н
ATOM	182 HD21 ASN	217	22.129	53.758	61.819	1.00	0.00	Н
ATOM	183 HD22 ASN	217	21.935	52.499	60.613	1.00	0.00	Н
ATOM	184 N GLY	218	23.523	48.531	61.115	1.00	0.00	Ν
ATOM	185 CA GLY	218	22.802	47.408	61.714	1.00	0.00	С
ATOM	186 C GLY	218	21.864	46.577	60.785	1.00	0.00	С
ATOM	187 O GLY	218	21.894	46.770	59.567	1.00	0.00	0
ATOM	188 H GLY	218	24.140	48.306	60.348	1.00	0.00	Н
ATOM	189 HA2 GLY	218	23.418	46.690	62.255	1.00	0.00	Н
ATOM	190 HA3 GLY	218	22.047	47.749	62.421	1.00	0.00	Н
ATOM	191 N VAL	219	21.185	45.556	61.306	1.00	0.00	Ν
ATOM	192 CA VAL	219	20.285	44.648	60.602	1.00	0.00	С
ATOM	193 C VAL	219	18.893	44.739	61.302	1.00	0.00	С
ATOM	194 O VAL	219	18.755	44.609	62.499	1.00	0.00	0
ATOM	195 H VAL	219	21.360	45.439	62.294	1.00	0.00	Н
ATOM	196 HA VAL	219	20.124	44.956	59.569	1.00	0.00	н
ATOM	197 N VAL	220	17.829	44.904	60.547	1.00	0.00	Ν
ATOM	198 CA VAL	220	16.480	45.018	61.063	1.00	0.00	С
ATOM	199 C VAL	220	15.934	43.688	61.370	1.00	0.00	С
ATOM	200 O VAL	220	16.155	42.788	60.588	1.00	0.00	0
ATOM	201 CB VAL	220	15.649	45.781	60.017	1.00	0.00	С
ATOM	202 CG1 VAL	220	14.164	45.897	60.424	1.00	0.00	С
ATOM	203 CG2 VAL	220	16.271	47.140	59.719	1.00	0.00	С
ATOM	204 H VAL	220	17.891	44.961	59.540	1.00	0.00	Н
ATOM	205 HA VAL	220	16.533	45.598	61.985	1.00	0.00	Н
ATOM	206 HB VAL	220	15.715	45.150	59.131	1.00	0.00	н
ATOM	207 HG11 VAL	220	13.652	44.963	60.650	1.00	0.00	Н
ATOM	208 HG12 VAL	220	14.031	46.567	61.274	1.00	0.00	Н
ATOM	209 HG13 VAL	220	13.632	46.449	59.649	1.00	0.00	н

ATOM	210 HG21 VAL	220	15.814	47.370	58.756	1.00	0.00	Н
ATOM	211 HG22 VAL	220	15.993	47.891	60.459	1.00	0.00	Н
ATOM	212 HG23 VAL	220	17.360	47.175	59.702	1.00	0.00	Н
ATOM	213 N ILE	221	15.383	43.482	62.553	1.00	0.00	Ν
ΑΤΟΜ	214 CA ILE	221	15.026	42.158	63.081	1.00	0.00	С
ΑΤΟΜ	215 C ILE	221	13.577	41.826	62.748	1.00	0.00	С
ATOM	216 O ILE	221	12.713	42.692	62.971	1.00	0.00	0
ΑΤΟΜ	217 CB ILE	221	15.361	41.955	64.584	1.00	0.00	С
ΑΤΟΜ	218 CG1 ILE	221	16.814	42.158	64.901	1.00	0.00	С
ΑΤΟΜ	219 CG2 ILE	221	14.842	40.626	65.147	1.00	0.00	С
ΑΤΟΜ	220 CD1 ILE	221	17.793	41.270	64.120	1.00	0.00	С
ΑΤΟΜ	221 H ILE	221	15.043	44.238	63.130	1.00	0.00	Н
ΑΤΟΜ	222 HA ILE	221	15.645	41.417	62.576	1.00	0.00	Н
ΑΤΟΜ	223 HB ILE	221	14.730	42.660	65.125	1.00	0.00	н
ΑΤΟΜ	224 HG12 ILE	221	17.055	43.198	64.684	1.00	0.00	Н
ΑΤΟΜ	225 HG13 ILE	221	17.026	42.219	65.969	1.00	0.00	Н
ΑΤΟΜ	226 HG21 ILE	221	15.200	39.781	64.559	1.00	0.00	Н
ΑΤΟΜ	227 HG22 ILE	221	15.061	40.553	66.212	1.00	0.00	Н
ATOM	228 HG23 ILE	221	13.759	40.742	65.189	1.00	0.00	Н
ATOM	229 HD12 ILE	221	17.954	41.684	63.125	1.00	0.00	Н
ATOM	230 HD13 ILE	221	18.707	41.306	64.714	1.00	0.00	н
TER								
END								

*UNL residue: inhibitor-01

Figure S1. Root-mean-square deviation (RMSD) values of the Zika NS2B-NS3 protease during the 1000 ns production GaMD simulation. The stable RMSD values indicate that the simulation time period is sufficient and reliable for modeling conformational changes in the protein binding pocket.

Figure S2. Figure S2. Bond angle and distances of the catalytic triad residues (His116, Asp140, and Ser200) in State I of the Zika NS2B-NS3 protease. The bond angle between Ser O–Ser H^{...}His N is 144.8°, the distance between Ser H^{...}His N is 4.7 Å, and the distance between His H^{...}Asp O is 4.3 Å.

Figure S3. Bond angle and distances of the catalytic triad residues (His116, Asp140, and Ser200) in State II of the Zika NS2B-NS3 protease. The bond angle between Ser O–Ser H^{...}His N is 87.4°, the distance between Ser H^{...}His N is 4.3 Å, and the distance between His H^{...}Asp O is 8.1 Å.