
Table S1.  
IRRAS spectra of CO adsorbed on a series of oxide single crystals.  The νCO values are provided 

for surface saturation at the lowest investigated temperatures.  Slight shifts to higher wavenumber 

due to coverage effect were sometimes reported (see relevant references below).

a.Computed: vdW DF2; 0.5 ML.  
b.  Experimental, temperature programmed desorption (TPD). 
c.DFT-PBE-D2.  
d.  Experimental TPD.  
e. Computed: DFT-PBE, 0.5 ML. 
f. Experimental: IRRAS. 
g. Experimental: IRRAS.  
h.  Computation: HSE06 – D3, atop configuration, 1 ML. 
i. HSE06-SOC (SOC: spin-orbit coupling)–this work, 1 ML (see Table 1).  
j. Experimental: IRRAS, simulated TPD (surface near saturation). 

Single crystal νCO (cm-1) Adsorption 

Temperature 

(K)

Reference Adsorption 

energy (meV)

Reference

TiO2(110)-rutile 2178 30 i 407a

38b

ii

iii

TiO2(101)-

anatase

2180 70 iv 461c

37d

v

60

ZnO(101bar0) 2170 60 vi 210e

32f

vii

61

α-Fe2O3(0001) 2169 65 viii 250g 63

CeO2(111) 2154 68 ix 290h 64

UO2(111) 2160 70 This work 302i

2700.290j

This work

This work
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Figure S1. 
The UO2(111) single crystal during Ar ion sputtering (3 x 10-5 torr, 2 kV, 9 mA) at about 1000 K 

(left) and at 370 K (right).  Note the luminescence from the crystal which indicates that the 

complete surface is being ion sputtered.  The luminescence originates from the U6d-O2p and U6d-

U5f decay and is more intense at low temperatures.  
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Figure S2: 
Schematic representation of (a) the computed UO₂ slab with an adsorbed CO molecule: side 
view (left) and top view (right); and (b) the oxidized UO₂ slab. The oxygen atom from the CO 
molecule is highlighted in light blue to distinguish it from the oxygen atoms within the UO₂ slab. 
Partial density of states obtained with c) DFT+U in the collinear formalism for the non-tilted 
configuration and d) HSE06 in the non-collinear formalism with spin-orbit coupling. In blue, the 
projection on the 5f U states, in red on the sp states of the surface UO2 oxygen atoms, and in 
green on the CO molecular orbitals. The green arrow indicates the 5σ-2π* molecular gap. 

In Figure S2, we show the partial density of states of the CO-UO2(111) system computed with 
DFT+U in the collinear formalism for the non-tilted CO configuration and with HSE06 in the 
non-collinear formalism with spin-orbit coupling. It can be seen that in both cases the 
unoccupied 2π* molecular orbitals of the CO molecule (green) are pinned at the top of the 
uranium 5f-5f gap. The main difference between the two formalisms is that the 5σ-2π* molecular 
gap is significantly smaller in DFT+U than in HSE06. Similar to what happens in the CO-CeO2 
system6, the distance between the carbon atom and the U4+ site is shorter for DFT+U. This 
results in spurious charge donation between the molecule and the surface, thereby affecting the 
C-O bond and consequently, the vibrational frequency, as described in the main text.
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Figure S3.
IRRAS was obtained after exposure of the clean UO2(111) single crystal at 73 K at the indicated 

Langmuir exposure (one Langmuir = 10-6 torr s).  
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Figure S4.  
(A) to (F) Integrated νCO and O-U-O IR peaks as a function of heating to the indicated 
temperature.  Data are collected at 73 K. 
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Model LangmuirEXT2
Equation y = 1/(a + b*x (̂c-1))
Plot nuCO
a 21.12417 ± 1.88996
b 1.2264E-21 ± 1.97044E-20
c 11.95113 ± 3.40983
Reduced Chi-Sqr 2.24566E-5
R-Square (COD) 0.95908
Adj. R-Square 0.93861

Model LangmuirEXT2
Equation y = 1/(a + b*x (̂c-1))
Plot O-U-O
a 37.15693 ± 2.8754
b 2.05048E-22 ± 3.1459E-21
c 12.42885 ± 3.25244
Reduced Chi-Sqr 6.22821E-6
R-Square (COD) 0.96569
Adj. R-Square 0.94853

Figure S5.  
Fitting of the integrated peaks of the νCO and O-U-O signals using a Langmuir-type function.
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Figure S6.
Changes in the CO frequency with the dCO distance were computed using different (a) DFT+U 
and (b) HSE06 methods.



Figure S7.
IRRAS of the clean UO2(111) single crystal surface at 74 K (reference), the 13CO dosed surface 
(0.02 and 0.2 L) and Log(dosed surfaces/reference surface).  
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Figure S8. 
Top and side views of surfaces with different coverages of O atoms and CO molecules.  √3×√3 
supercells with 9 atomic layers were employed using the DFT + U approach.  The main 
asymmetric vibrational frequencies νUO of the surface U and the adsorbed O atoms and their O 
adsorption energies per atom are indicated.  The adsorbed oxygen atoms are shown in light blue.
Ea: adsorption energy per O atom is equal to 

  where n is the number adsorbed atoms.
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