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Two modern DFT functionals that have been shown to perform well for liquid water

simulations®!*>2 - the dispersion corrected GGA functional revPBE-D3%5* and the strongly

constrained and appropriately normed (SCAN) meta-GGA functional®- were selected for

an initial benchmark study to determine the most suitable XC functional for the ab initio

simulations upon which the MLP would be trained.

52

It should be noted that dispersion



corrected hybrid functionals have been shown to provide slightly better results for liquid
water simulations;*®5” however initial simulations with revPBE0O-D3 showed there is ap-
proximately a six-fold increase in computational cost, rendering longer time-scale AIMD

simulations unfeasible for the envisaged system sizes.

Na/Cl ion in water

To study the performance of SCAN and revPBE-D3 for ion-water simulations, four sep-
arate AIMD simulations were performed for both revPBE-D3 and SCAN for Na™ in water
and Cl in water. The Na(Cl)-O RDF g(r) are compared to experimental values in Figure
S1 and Table I. Both SCAN and revPBE-D3 are in good agreement with the position of

the first experimental Cl-O peak (R} ), where both are within 0.07 A of the experimental

max

data. However the height g(R.

max

) is underestimated by both by approximately 15%. SCAN
and revPBE-D3 both qualitatively agree with the position of the second peak maximum,
but they both tend to overstructure compared to experiment. The experimental Na-O peak
is more accurately reproduced by SCAN than revPBE-D3. The revPBE-D3 peak is shifted
0.17 A from the experimental value, and the peak height is 27% lower. This is also in agree-
ment with previous studies, where SCAN has been shown to outperform GGA functionals in
reproducing the sodium-water solvation structure.>® Despite a lack of experimental data for
the second solvation shell, revPBE-D3 is in much closer qualitative agreement with SCAN

than for the first peak.

TABLE I. Summary of structural properties of solvated sodium/chloride ions obtained from RDFs
g(r) computed from AIMD simulations with SCAN and revPBE-D3 at 300 K. Experimental ref-
erence data for Cl-O and Na-O were obtained from neutron diffraction®” and X-Ray diffraction®?
data respectively. Difference from experiment is shown in brackets.

Cl-O Na-O
SCAN revPBE-D3 Experiment SCAN revPBE-D3 Experiment
RL.(A) 3.10 (0.07) 3.19 (0.02) 3.17 2.36 (0.00) 2.53 (0.17) 2.36

max

g(RL ) 2.83(0.62) 2.70 (0.51)  3.21  5.79 (0.08) 4.30 (0.43)  5.87

max

The O-O RDF for both solvated sodium and chloride ion systems was also computed
and compared to experiment in order to evaluate the performance of the two functionals
for water. This analysis is shown below in Figure S2. In both cases, SCAN significantly

overstructures water compared to revPBE-D3 and experiment, with a first peak maximum
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FIG. S1. Radial distribution function g(r) for Cl-O (left) and Na-O (right) comparing revPBE-D3
and SCAN with experiment. Cl-O experimental RDF obtained from neutron diffraction dataS’
and Na-O experimental RDF obtained from X-Ray diffraction data.>®
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FIG. S2. Radial distribution function g(r) for O-O for CI /H,O (left) and Na®/H,O (right).
Compared to experimental data taken from Ref. S10.

approximately 25% greater than experiment. This is consistant with literature results, in
which Duignan et al. compared the performance of revPBE-D3 and SCAN in simulations
of liquid water at 300 K.5® revPBE-D3 reproduced well the experimental O-O radial distri-
bution function (RDF), with the first peak maximium and magnitude coinciding to within

0.1 A and 2% respectively, while SCAN overstructured water, with a first peak RDF maxi-
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mum approximately 20% larger than experiment. Galib et al. also report a computed water
density with revPBE-D3 of 0.962 + 0.029 gcm~3 within 4% of the experimental density of

0.997 gem 3,92 compared to a computed density by Wiktor et al. of 1.05 gem™3.5!!

In summary, the decision between SCAN and revPBE-D3 is not completely clear-cut and
both functionals have advantages and disadvantages. revPBE-D3 performs better for liquid
water than SCAN. With respect to the solvated ions, revPBE-D3 is on par with SCAN
for the CI-O interactions, however performs significantly poorer for Na-O. Nevertheless,
revPBE-D3 reproduces experimental data much better than SCAN with respect to the O-O
RDF. As a footnote, SCAN is also two-thirds more expensive than revPBE-D3. Therefore,
the AIMD trajectories generated using revPBE-D3 were chosen for the initial development
of the C-NNP training set and revPBE-D3 was used for generation of subsequent AIMD
data and during the active learning stages of the MLP development.

S2. DEVELOPMENT OF MACHINE LEARNING POTENTIAL
Automated Work Flow

The procedure for developing the committee neural network potential (C-NNP) was fol-
lowed as described in Ref S12. The general approach taken in developing the C-NNP was to
treat different relevant systems and conditions individually with active learning, generating
a training set for each condition and then combining the individual training sets to generate
the final model. (We note that there are many active learning strategies that can lead in

the end to converged models as for example in the ANIx model)>?

The model was iteratively improved over five generations of such active learning rounds,
with each generation targeting a specific region of phase space. The overall development
over these five generations of the model is summarised in Figure S3. An initial potential was
trained on forces and energies obtained from ab initio simulations described in Section S3
comprising bulk water, individual Na™/ CI” ions in water, an Na*/ CI” ion pair in water and
a small 2 x 2 nanocrystal in water. This model was then used under different temperatures
to generate structures along the dissolution trajectory of the prototypical 4x4x4 nanocrystal
(Generation 2). Later generations of the model targeted solution and intermediate struc-

tures along the dissolution trajectory (Generations 3+4) and highly concentrated solutions
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(Generation 5). The development of the model used the Python AML active learning pack-
age described in Ref. S14. For a given active learning iteration, 20 random structures from
a reference trajectory were used to initialise the model. After training 8 NNP members,
forces and energies of 2000 randomly selected structures from the reference trajectory were
predicted to ascertain the force and energy committee disagreements. 20 structures with the
largest mean force disagreement were added to the training set for the next round of active
learning. Convergence was reached when new structures added to the training set did not
improve the committee disagreement between points already in the training set, indicating
the training set was sufficiently diverse. The training set of the final C-NNP model contained
2127 structures. The overall force and energy training root mean square error (RMSE) for
the model are 38.0 meV/ A and 1.3 meV /atom respectively. Given the complexity of the
system under study, this compares well to a RMSE of 70 meV/A quoted in Ref. S15 for a

simpler system of large scale MD simulations of water using NNPs trained on DFT.

Details of Model

The chemical environment around each atom was described using a general set of atom-
centered symmetry functions.>'® There are 10 radial and 4 angular functions for each pair
and triplet of atoms, following Ref. S12. All symmetry functions used a cutoff function of
angular cosine form with a cutoff radius of 12 Bohr. The committee was comprised of 8 NNP
members, of identical architecture with 2 hidden layers and 25 neurons in each layer. In all
cases, random sub-sampling was performed to introduce variability between the committee
members, where 10% of the total set of structures were discarded. The weights and biases of
the NNPs were optimised using the n2p2 code.’!" Individual models during active learning
were optimised for 15 epochs, while the final C-NNP model used in simulations was optimised
for 50 epochs.

To ensure that long-range effects are accurately captured by the machine learning po-
tential, we explicitly incorporated long-range effects beyond the cutoff of the symmetry
functions (12 Bohr). The predicted energy can in general be written as a sum of short range
and long range contributions (Fs, and E.,, respectively): Eio = Fg + Feou. The long-
range model was thus trained on the difference between the standard short-ranged model

and the Coulomb contribution, calculated using point charges of +/- 1 respectively for Na
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and Cl and using TIP3P model parameters for water.5'® We used this model in all pro-
duction simulations, where the Coulomb contributions were explicitly included via particle
mesh ewald summation. Details on the validation of the final model and the role of long

range interactions in these simulations are presented in the next Section.
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FIG. S3. Summary of iterative development of MLP over 5 generations. The number of configu-
rations included from each AIMD simulation is given in Generation-01. Thereafter, the number of
configurations is the total number of structures in the training set for the given generation.
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Validation

The system studied is complex, so care was taken to set up a series of validation tests

that incorporates relevant subsystems and properties.

2 x 2 x 2 NaCl nanocrystal

The static and dynamical properties of the largest accessible NaCl nanocrystal in water for
AIMD simulations (2x2x2 NaCl surrounded by 229 waters - 695 atoms) was analysed using a
benchmarking scheme proposed in Ref. S12, comparing AIMD to the C-NNP predictions and
shown in Figure S4. The radial distribution functions (RDFs) g(r) for all the atom species of
the system gives a good assessment of the ability of the C-NNP to predict thermodynamic
properties. The vibrational density of states (VDOS) for each element gives information
on the vibrational modes of the system, and thus the dynamics of inter- and intra-atomic
interactions. The forces on the atoms are sensitive to the local environment, and give
additional insight via which the quality of the ML model can be evaluated. RDF and VDOS
predictions are all in essentially perfect agreement with the AIMD reference trajectory while
the force predictions and the DFT reference are very well correlated. It should be noted that
the slight discrepancy in the VDOS between the C-NNP and AIMD at higher frequencies is
likely due to the large plane wave cutoff required in the DFT calculations to obtain converged
Na forces (Discussed in further detail in Section S3). Nevertheless the symmetry between

Na and Cl VDOS spectra is reassuring.
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FIG. S4. Benchmark tests of long-range C-NNP model predictions of structural and dynamical
properties of a 2 x 2 x 2 NaCl nanocrystal in water as well as force prediction. The comparison
between AIMD and the C-NNP RDFs, VDOS and force correlation are shown in the left, middle

and right panels respectively.

Validation of Dissolution Process

As the most rigorous of tests for the C-NNP we validate the ML model for the actual
dissolution process of a 4x4x4 nanocrystal in solution by comparing the force and energy
predictions of the model and the corresponding DFT forces and energies for a set of structures
uniformly selected along the dissolution process. It is particularly valuable since the model
has not been explicitly trained on these structures. First, an extensive MD simulation with
the developed model was performed in order to sample the dissolution process of the 4x4x4
nanocrystal in solution. A variety of structures were selected to capture all of the relevant
configurations along the trajectory; from the intact NaCl crystal lattice, to the initial stages

of dissolution to the end point of the fully solvated ions in solution. Next, the DFT reference
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energies and forces of these 50 structures were computed. The resulting correlation of the
forces is shown in Figure S5. The RMSE values for both forces (37.0 meV/A) and energies
(0.3 meV /atom) compare very favourably to similar reactive systems, which have been
studied using machine learning potentials, such as the work by Behler et al. in Ref. S19
who quote a force and energy RMSE for a model describing proton transport at ZnO/H,0
interfaces of 140.4 meV/A and 1.0 meV /atom respectively.

Energy RMSE [meV per atom] = 0.256

Force RMSE [meV/A] = 36.997 7
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FIG. S5. Correlation plot for C-NNP predicted forces and corresponding reference DF'T forces,
with light grey line showing a perfect correlation coefficient of 1. Representative snapshots of the
variety of structures tested are shown on the right hand side of the figure.
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Long-range Effects

In order to evaluate the effect of explicitly incorporating long range effects into the model
structural properties (RDFs) of the 2.48 mol/kg NaCl solution were computed. These are
compared to the short range model in Figure S6. Both predictions are in very good agreement
for all cases of water, ions and ion-water RDFs. Nevertheless small discrepancies between
long- and short-range model predictions in the cases of the C1-Cl and Na-Cl RDF's prompt us
to use the long-range model for production runs, given the additional physical information
included in the model. In general however this analysis suggests that overall for our simulated
systems, long-range effects do not have a substantial impact. This is in agreement with

observations by Yue et al. using a similar approach of including a Coulomb baseline>?° of .
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FIG. S6. Comparison of long and short-range models in predicting NaCl solution properties. RDFs
for 2.48 mol/kg NaCl solution for both long- and short-range model predictions are shown in red

and black respectively.
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In summary this set of validation tests confirm the overall quality and accuracy of the
C-NNP model. The model has performed comparably to or exceeded literature values on
a variety of systems and properties that are very relevant for the dissolution process, from
small scale studies of single ions in solution to systems sizes and interactions that will be

explored in the detailed analysis of the dissolution process.

S3. MOLECULAR DYNAMICS SIMULATIONS

System setups

All simulations were carried out in an orthorhombic simulation cell with periodic bound-

ary conditions in z, ¥y, z directions. Details of the simulation setups for all systems are shown

in Table II.

TABLE II: Details of systems simulated. L is (unless stated)
the cubic box dimensions in A.
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Simulation details

All MD/AIMD simulations were performed using the CP2K/Quickstep code.5?! AIMD
simulations were used to generate reference data for development of the model as shown

in Table III, with pre-equilibrated structures obtained from force field simulation. C-NNP
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TABLE III. Details of simulation lengths performed with AIMD.

AIMD
System Tsim
Bulk H20 100 ps
Na / H20 80 ps
Cl / H20 70 ps
NaCl/H20 interface 70 ps
Na—Cl contact ion pair 36 ps

Na—Cl solvent-separated ion pair 36 ps

2 x 2 x 2 NaCl nanocrystal 25 ps

TABLE 1V. Details of simulation lengths for production runs performed with C-NNP.
C-NNP Production

System Tsim

4 x 4 x 4 NaCl nanocrystal (2.84 mol/kg) 10 x >2 ns

4 x 4 x 4 NaCl nanocrystal (1.42 mol/kg) 10 x >2 ns

6 x 6 x 6 NaCl nanocrystal (5.61 mol/kg) 10 x 10 - 30 ns

production simulations as shown in Table IV were initially equillibrated with fixed ions using

the C-NNP model.

Force field pre-equilibration details

A 1 ns force-field based MD simulation was first performed on all Na/Cl containing
systems from Table III to obtain a pre-equilibrated initial configuration for subsequent AIMD
simulations. The Born-Mayer-Huggins potential for NaC15?2 and TIP3P model for water®'®
were used and the water/NaCl interactions were described by the parameters given by

Lynden-Bell et al. in Ref. S23.

Additional production simulations as described in Section S5 were performed using the
Joung Cheatham (JC) model for ion-ion interactions, with SPC/E water model and ion-
water interactions described by LJ crossed interactions using the Lorentz-Berthelot combi-

nation rules. These parameters were taken from Ref. S24.
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AIMD simulation details

Prior to all AIMD simulations, a short constrained AIMD simulation, keeping ions fixed,
was performed on all the systems given in Table III containing ions, to obtain a well-
equillibrated water structure around the Na and Cl ions. These were used as starting con-
figurations for simulations in NVT ensemble within the generalised gradient approximation
using the revPBE functional® with Grimmes’ dispersion correction.5?> The electronic den-
sity was partitioned into core and valence contributions, with core electrons described using
the norm-conserving Goedecker, Teter and Hutter (GTH) pseudopotentials.®?6 Na 2s and 2p
electrons were also treated explicitly given the well-known issue of non-linear core-valence
exchange/correlation. Valence electrons were described using the MOLOPT TZV2P basis
set.5?7 Stochastic errors for Na forces due to insufficient basis set convergence were observed
in additional DFT convergence tests for the cutoff of the plane-wave representation of the
charge density. Therefore a plane wave cutoff of 1200 Ry was used to obtain accurate forces.
Deuterium masses were used in lieu of hydrogen, allowing a 1 fs timestep and reducing errors
due to neglecting nuclear quantum effects through classical propagation of the nuclei. Sim-
ulations were performed at 300 K, maintained using the CSVR thermostat..5?® All AIMD
simulations were at least 40 ps long (except for 2 x 2 x 2 NaCl nanocrystal which was 25 ps

due to computational cost.) and can be found in Table III.

S4. ANALYSIS DETAILS
Steinhardt order parameters

The Steinhardt order parameter g8 is a particular case of a larger set of bond order
parameters based on spherical harmonics.%? To distinguish between solid and liquid-like
ions we first compute the complex vector gg(i) for each particle ¢, where N,(7) is the number

of nearest neighbours of particle 7, and m runs from -8 to +8.

Ny (4)
i) = o O Yo (ri) 51
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Y are the spherical harmonics and r; ; connects particles ¢ and j. Following Lechner et

al.%% we then compute an averaged form of this local bond order parameter by averaging

the local gs (i) vectors over the particle ¢ and its surroundings:

l

W) = | 57 O s (52)
where 1 .
(78,m<i> = Nb(l) Z YS,m(k) <S3)

and N, (i) are the neighbours of particle 4

0.2 0.3 04 0.5
Js

FIG. S7. @g distributions for ideal cases of pristine NaCl lattcice (light blue) and solvated Na/Cl
ions (dark blue).

dSBl

Computation of these bond order parameters was performed using the Freu python

package.

Coordination Numbers and clusters

Computation of all coordination numbers and clusters were performed using Plumed,>3

and analysis carried out using Python. The CN of an atom ¢ with a set of atoms in A is
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defined by:

jEA

where s;; is a smooth switching function with a range of [0,1]:

(=) (s5)

ri; is the interatomic distance between atom i and atom j. 7o for Na-O (2.80 A) and CI-H
(2.60 A) were obtained from literature values,®** while rq for Na-Cl was taken such that the
CNs of the pristine lattice coincided with the integral up to the first minimum of the Na-Cl
RDF (3.5 A). An ion was defined as dissolved if it has a Na-O/CI-H CN less than 1 for
more than 8 ps. We show that this definition is not sensitive to changes in the time chosen

in Figure S8. The cluster size distributions were computed by detecting coordinated ions

Taiss = 0.8 ps Taiss = 8 ps Tdiss = 80 ps

FIG. S8. Sensitivity of dissolution behaviour of ions based on definition of time spent with CN<1.

using a threshold of a ion-ion CN > 2, and then using these atoms as input for a depth first
search graph reduction algorithm to identify the sets of ions clustered together.
To compute the surface area to volume ratio of the dissolving crystal, a DF'S algorithm

was implemented using the Freud Python package®' in order to identify the ions in the
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largest cluster at a given time. The convex hull of this set of points was then obtained
(provided there were > 3 ions in the cluster), and the surface area to volume ratio of the

hull was computed.

S5. ADDITIONAL RESULTS

MLP

Results from identical simulations as described above for the C-NNP at 2.48 mol /kg NaCl
concentration at 400 K are shown in Figure S9. The additional results for the 1.42 mol/kg
and 2.48 mol/kg trajectories at 330 K are also shown in Figure S9.

400 K 2.48 mol/kg 330 K 2.48 mol/kg 330 K 1.42 mol/kg 330 K 5.61 mol/kg
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FIG. S9. Crystal size, gs and surface area:volume ratio for ten simulated trajectories at 400 K
(2.48 mol/kg) and 330 K (2.48 mol/kg, 1.42 mol/kg and 5.61 mol/kg).

FF

Results from identical simulations as described above for the C-NNP at 1.42 mol/kg and
2.48 mol/kg at 330 K are shown in Figure S10 for a JC/SCP/E force-field model.
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FIG. S10. Crystal size, gs and surface area:volume ratio for ten simulated trajectories with
JC/SPC/E at 330 K (2.48 mol/kg and 1.42 mol/kg).
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