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S1. SELECTING DFT FUNCTIONAL

Two modern DFT functionals that have been shown to perform well for liquid water

simulationsS1,S2 - the dispersion corrected GGA functional revPBE-D3S3,S4 and the strongly

constrained and appropriately normed (SCAN) meta-GGA functionalS5- were selected for

an initial benchmark study to determine the most suitable XC functional for the ab initio

simulations upon which the MLP would be trained. It should be noted that dispersion
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corrected hybrid functionals have been shown to provide slightly better results for liquid

water simulations;S6,S7 however initial simulations with revPBE0-D3 showed there is ap-

proximately a six-fold increase in computational cost, rendering longer time-scale AIMD

simulations unfeasible for the envisaged system sizes.

Na/Cl ion in water

To study the performance of SCAN and revPBE-D3 for ion-water simulations, four sep-

arate AIMD simulations were performed for both revPBE-D3 and SCAN for Na+ in water

and Cl– in water. The Na(Cl)-O RDF g(r) are compared to experimental values in Figure

S1 and Table I. Both SCAN and revPBE-D3 are in good agreement with the position of

the first experimental Cl-O peak (R1
max), where both are within 0.07 Å of the experimental

data. However the height g(R1
max) is underestimated by both by approximately 15%. SCAN

and revPBE-D3 both qualitatively agree with the position of the second peak maximum,

but they both tend to overstructure compared to experiment. The experimental Na-O peak

is more accurately reproduced by SCAN than revPBE-D3. The revPBE-D3 peak is shifted

0.17 Å from the experimental value, and the peak height is 27% lower. This is also in agree-

ment with previous studies, where SCAN has been shown to outperform GGA functionals in

reproducing the sodium-water solvation structure.S8 Despite a lack of experimental data for

the second solvation shell, revPBE-D3 is in much closer qualitative agreement with SCAN

than for the first peak.

TABLE I. Summary of structural properties of solvated sodium/chloride ions obtained from RDFs

g(r) computed from AIMD simulations with SCAN and revPBE-D3 at 300 K. Experimental ref-

erence data for Cl-O and Na-O were obtained from neutron diffractionS9 and X-Ray diffractionS2

data respectively. Difference from experiment is shown in brackets.

Cl-O Na-O

SCAN revPBE-D3 Experiment SCAN revPBE-D3 Experiment

R1
max (Å) 3.10 (0.07) 3.19 (0.02) 3.17 2.36 (0.00) 2.53 (0.17) 2.36

g(R1
max) 2.83 (0.62) 2.70 (0.51) 3.21 5.79 (0.08) 4.30 (0.43) 5.87

The O-O RDF for both solvated sodium and chloride ion systems was also computed

and compared to experiment in order to evaluate the performance of the two functionals

for water. This analysis is shown below in Figure S2. In both cases, SCAN significantly

overstructures water compared to revPBE-D3 and experiment, with a first peak maximum
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FIG. S1. Radial distribution function g(r) for Cl-O (left) and Na-O (right) comparing revPBE-D3

and SCAN with experiment. Cl-O experimental RDF obtained from neutron diffraction dataS9

and Na-O experimental RDF obtained from X-Ray diffraction data.S8
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
r)

O
-O

SCAN
revPBE-D3
Experiment

FIG. S2. Radial distribution function g(r) for O-O for Cl–/H2O (left) and Na+/H2O (right).

Compared to experimental data taken from Ref. S10.

approximately 25% greater than experiment. This is consistant with literature results, in

which Duignan et al. compared the performance of revPBE-D3 and SCAN in simulations

of liquid water at 300 K.S8 revPBE-D3 reproduced well the experimental O-O radial distri-

bution function (RDF), with the first peak maximium and magnitude coinciding to within

0.1 Å and 2% respectively, while SCAN overstructured water, with a first peak RDF maxi-
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mum approximately 20% larger than experiment. Galib et al. also report a computed water

density with revPBE-D3 of 0.962 ± 0.029 gcm−3 within 4% of the experimental density of

0.997 gcm−3,S2 compared to a computed density by Wiktor et al. of 1.05 gcm−3.S11

In summary, the decision between SCAN and revPBE-D3 is not completely clear-cut and

both functionals have advantages and disadvantages. revPBE-D3 performs better for liquid

water than SCAN. With respect to the solvated ions, revPBE-D3 is on par with SCAN

for the Cl-O interactions, however performs significantly poorer for Na-O. Nevertheless,

revPBE-D3 reproduces experimental data much better than SCAN with respect to the O-O

RDF. As a footnote, SCAN is also two-thirds more expensive than revPBE-D3. Therefore,

the AIMD trajectories generated using revPBE-D3 were chosen for the initial development

of the C-NNP training set and revPBE-D3 was used for generation of subsequent AIMD

data and during the active learning stages of the MLP development.

S2. DEVELOPMENT OF MACHINE LEARNING POTENTIAL

Automated Work Flow

The procedure for developing the committee neural network potential (C-NNP) was fol-

lowed as described in Ref S12. The general approach taken in developing the C-NNP was to

treat different relevant systems and conditions individually with active learning, generating

a training set for each condition and then combining the individual training sets to generate

the final model. (We note that there are many active learning strategies that can lead in

the end to converged models as for example in the ANIx model)S13

The model was iteratively improved over five generations of such active learning rounds,

with each generation targeting a specific region of phase space. The overall development

over these five generations of the model is summarised in Figure S3. An initial potential was

trained on forces and energies obtained from ab initio simulations described in Section S3

comprising bulk water, individual Na+/ Cl– ions in water, an Na+/ Cl– ion pair in water and

a small 2× 2 nanocrystal in water. This model was then used under different temperatures

to generate structures along the dissolution trajectory of the prototypical 4x4x4 nanocrystal

(Generation 2). Later generations of the model targeted solution and intermediate struc-

tures along the dissolution trajectory (Generations 3+4) and highly concentrated solutions
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(Generation 5). The development of the model used the Python AML active learning pack-

age described in Ref. S14. For a given active learning iteration, 20 random structures from

a reference trajectory were used to initialise the model. After training 8 NNP members,

forces and energies of 2000 randomly selected structures from the reference trajectory were

predicted to ascertain the force and energy committee disagreements. 20 structures with the

largest mean force disagreement were added to the training set for the next round of active

learning. Convergence was reached when new structures added to the training set did not

improve the committee disagreement between points already in the training set, indicating

the training set was sufficiently diverse. The training set of the final C-NNP model contained

2127 structures. The overall force and energy training root mean square error (RMSE) for

the model are 38.0 meV/Å and 1.3 meV/atom respectively. Given the complexity of the

system under study, this compares well to a RMSE of 70 meV/Å quoted in Ref. S15 for a

simpler system of large scale MD simulations of water using NNPs trained on DFT.

Details of Model

The chemical environment around each atom was described using a general set of atom-

centered symmetry functions.S16 There are 10 radial and 4 angular functions for each pair

and triplet of atoms, following Ref. S12. All symmetry functions used a cutoff function of

angular cosine form with a cutoff radius of 12 Bohr. The committee was comprised of 8 NNP

members, of identical architecture with 2 hidden layers and 25 neurons in each layer. In all

cases, random sub-sampling was performed to introduce variability between the committee

members, where 10% of the total set of structures were discarded. The weights and biases of

the NNPs were optimised using the n2p2 code.S17 Individual models during active learning

were optimised for 15 epochs, while the final C-NNP model used in simulations was optimised

for 50 epochs.

To ensure that long-range effects are accurately captured by the machine learning po-

tential, we explicitly incorporated long-range effects beyond the cutoff of the symmetry

functions (12 Bohr). The predicted energy can in general be written as a sum of short range

and long range contributions (Esr and Ecoul respectively): Etot = Esr + Ecoul. The long-

range model was thus trained on the difference between the standard short-ranged model

and the Coulomb contribution, calculated using point charges of +/- 1 respectively for Na

S6



and Cl and using TIP3P model parameters for water.S18 We used this model in all pro-

duction simulations, where the Coulomb contributions were explicitly included via particle

mesh ewald summation. Details on the validation of the final model and the role of long

range interactions in these simulations are presented in the next Section.
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Generation-01
AIMD
Configurations
NaCl/H2O interface: 258
Cl−/H2O: 100
Na−/H2O: 100
H2O: 139
2x2x2 NaCl/H2O: 257
Na–Cl/H2O: 198

Generation-02

CNNP
structure
generator:
Configurations: 1295

Generation-03

Solution/
long-range:
Configurations: 1443

Generation-04

Dissolving:
Configurations: 1608

Generation-05

High
Concentration
Solutions:
Configurations: 2127

FIG. S3. Summary of iterative development of MLP over 5 generations. The number of configu-

rations included from each AIMD simulation is given in Generation-01. Thereafter, the number of

configurations is the total number of structures in the training set for the given generation.
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Validation

The system studied is complex, so care was taken to set up a series of validation tests

that incorporates relevant subsystems and properties.

2× 2× 2 NaCl nanocrystal

The static and dynamical properties of the largest accessible NaCl nanocrystal in water for

AIMD simulations (2×2×2 NaCl surrounded by 229 waters - 695 atoms) was analysed using a

benchmarking scheme proposed in Ref. S12, comparing AIMD to the C-NNP predictions and

shown in Figure S4. The radial distribution functions (RDFs) g(r) for all the atom species of

the system gives a good assessment of the ability of the C-NNP to predict thermodynamic

properties. The vibrational density of states (VDOS) for each element gives information

on the vibrational modes of the system, and thus the dynamics of inter- and intra-atomic

interactions. The forces on the atoms are sensitive to the local environment, and give

additional insight via which the quality of the ML model can be evaluated. RDF and VDOS

predictions are all in essentially perfect agreement with the AIMD reference trajectory while

the force predictions and the DFT reference are very well correlated. It should be noted that

the slight discrepancy in the VDOS between the C-NNP and AIMD at higher frequencies is

likely due to the large plane wave cutoff required in the DFT calculations to obtain converged

Na forces (Discussed in further detail in Section S3). Nevertheless the symmetry between

Na and Cl VDOS spectra is reassuring.
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FIG. S4. Benchmark tests of long-range C-NNP model predictions of structural and dynamical

properties of a 2 × 2 × 2 NaCl nanocrystal in water as well as force prediction. The comparison

between AIMD and the C-NNP RDFs, VDOS and force correlation are shown in the left, middle

and right panels respectively.

Validation of Dissolution Process

As the most rigorous of tests for the C-NNP we validate the ML model for the actual

dissolution process of a 4x4x4 nanocrystal in solution by comparing the force and energy

predictions of the model and the corresponding DFT forces and energies for a set of structures

uniformly selected along the dissolution process. It is particularly valuable since the model

has not been explicitly trained on these structures. First, an extensive MD simulation with

the developed model was performed in order to sample the dissolution process of the 4x4x4

nanocrystal in solution. A variety of structures were selected to capture all of the relevant

configurations along the trajectory; from the intact NaCl crystal lattice, to the initial stages

of dissolution to the end point of the fully solvated ions in solution. Next, the DFT reference
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energies and forces of these 50 structures were computed. The resulting correlation of the

forces is shown in Figure S5. The RMSE values for both forces (37.0 meV/Å) and energies

(0.3 meV/atom) compare very favourably to similar reactive systems, which have been

studied using machine learning potentials, such as the work by Behler et al. in Ref. S19

who quote a force and energy RMSE for a model describing proton transport at ZnO/H2O

interfaces of 140.4 meV/Å and 1.0 meV/atom respectively.
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FIG. S5. Correlation plot for C-NNP predicted forces and corresponding reference DFT forces,

with light grey line showing a perfect correlation coefficient of 1. Representative snapshots of the

variety of structures tested are shown on the right hand side of the figure.
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Long-range Effects

In order to evaluate the effect of explicitly incorporating long range effects into the model

structural properties (RDFs) of the 2.48 mol/kg NaCl solution were computed. These are

compared to the short range model in Figure S6. Both predictions are in very good agreement

for all cases of water, ions and ion-water RDFs. Nevertheless small discrepancies between

long- and short-range model predictions in the cases of the Cl-Cl and Na-Cl RDFs prompt us

to use the long-range model for production runs, given the additional physical information

included in the model. In general however this analysis suggests that overall for our simulated

systems, long-range effects do not have a substantial impact. This is in agreement with

observations by Yue et al. using a similar approach of including a Coulomb baselineS20 of .
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FIG. S6. Comparison of long and short-range models in predicting NaCl solution properties. RDFs

for 2.48 mol/kg NaCl solution for both long- and short-range model predictions are shown in red

and black respectively.
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In summary this set of validation tests confirm the overall quality and accuracy of the

C-NNP model. The model has performed comparably to or exceeded literature values on

a variety of systems and properties that are very relevant for the dissolution process, from

small scale studies of single ions in solution to systems sizes and interactions that will be

explored in the detailed analysis of the dissolution process.

S3. MOLECULAR DYNAMICS SIMULATIONS

System setups

All simulations were carried out in an orthorhombic simulation cell with periodic bound-

ary conditions in x, y, z directions. Details of the simulation setups for all systems are shown

in Table II.

TABLE II: Details of systems simulated. L is (unless stated)
the cubic box dimensions in Å.

System Simulation Details Snapshot

Bulk H2O
Nwater = 64
L = 12.42 Å

Na+ / H2O
Nwater = 63
NNa = 1
L = 12.42 Å

Cl– / H2O
Nwater = 63
NCl = 1
L = 12.42 Å

Na+–Cl– contact ion pair

Nwater = 62
NNa = 1
NCl = 1
L = 12.42 Å

Na+–Cl– solvent-separated ion pair

Nwater = 62
NNa = 1
NCl = 1
L = 12.42 Å
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NaCl / H2O interface

Nwater = 89
NNa = 36
NCl = 36
L(x,y,z) = (16.2, 12.1 58.7) Å

2× 2× 2 NaCl nanocrystal

Nwater = 229
NNa = 4
NCl = 4
L = 19.8 Å

4× 4× 4 NaCl nanocrystal (2.48 mol/kg)

Nwater = 625
NNa = 32
NCl = 32
L = 27.8 Å

4× 4× 4 NaCl nanocrystal (1.42 mol/kg)

Nwater = 1250
NNa = 32
NCl = 32
L = 34.1 Å

6× 6× 6 NaCl nanocrystal (5.61 mol/kg)

Nwater = 1068
NNa = 108
NCl = 108
L = 34.1 Å

Simulation details

All MD/AIMD simulations were performed using the CP2K/Quickstep code.S21 AIMD

simulations were used to generate reference data for development of the model as shown

in Table III, with pre-equilibrated structures obtained from force field simulation. C-NNP
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TABLE III. Details of simulation lengths performed with AIMD.

AIMD

System Tsim

Bulk H2O 100 ps

Na / H2O 80 ps

Cl / H2O 70 ps

NaCl/H2O interface 70 ps

Na–Cl contact ion pair 36 ps

Na–Cl solvent-separated ion pair 36 ps

2 x 2 x 2 NaCl nanocrystal 25 ps

TABLE IV. Details of simulation lengths for production runs performed with C-NNP.

C-NNP Production

System Tsim

4× 4× 4 NaCl nanocrystal (2.84 mol/kg) 10 × >2 ns

4× 4× 4 NaCl nanocrystal (1.42 mol/kg) 10 × >2 ns

6× 6× 6 NaCl nanocrystal (5.61 mol/kg) 10 × 10 - 30 ns

production simulations as shown in Table IV were initially equillibrated with fixed ions using

the C-NNP model.

Force field pre-equilibration details

A 1 ns force-field based MD simulation was first performed on all Na/Cl containing

systems from Table III to obtain a pre-equilibrated initial configuration for subsequent AIMD

simulations. The Born-Mayer-Huggins potential for NaClS22 and TIP3P model for waterS18

were used and the water/NaCl interactions were described by the parameters given by

Lynden-Bell et al. in Ref. S23.

Additional production simulations as described in Section S5 were performed using the

Joung Cheatham (JC) model for ion-ion interactions, with SPC/E water model and ion-

water interactions described by LJ crossed interactions using the Lorentz-Berthelot combi-

nation rules. These parameters were taken from Ref. S24.
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AIMD simulation details

Prior to all AIMD simulations, a short constrained AIMD simulation, keeping ions fixed,

was performed on all the systems given in Table III containing ions, to obtain a well-

equillibrated water structure around the Na and Cl ions. These were used as starting con-

figurations for simulations in NVT ensemble within the generalised gradient approximation

using the revPBE functionalS4 with Grimmes’ dispersion correction.S25 The electronic den-

sity was partitioned into core and valence contributions, with core electrons described using

the norm-conserving Goedecker, Teter and Hutter (GTH) pseudopotentials.S26 Na 2s and 2p

electrons were also treated explicitly given the well-known issue of non-linear core-valence

exchange/correlation. Valence electrons were described using the MOLOPT TZV2P basis

set.S27 Stochastic errors for Na forces due to insufficient basis set convergence were observed

in additional DFT convergence tests for the cutoff of the plane-wave representation of the

charge density. Therefore a plane wave cutoff of 1200 Ry was used to obtain accurate forces.

Deuterium masses were used in lieu of hydrogen, allowing a 1 fs timestep and reducing errors

due to neglecting nuclear quantum effects through classical propagation of the nuclei. Sim-

ulations were performed at 300 K, maintained using the CSVR thermostat..S28 All AIMD

simulations were at least 40 ps long (except for 2× 2× 2 NaCl nanocrystal which was 25 ps

due to computational cost.) and can be found in Table III.

S4. ANALYSIS DETAILS

Steinhardt order parameters

The Steinhardt order parameter q8 is a particular case of a larger set of bond order

parameters based on spherical harmonics.S29 To distinguish between solid and liquid-like

ions we first compute the complex vector q8(i) for each particle i, where Nb(i) is the number

of nearest neighbours of particle i, and m runs from -8 to +8.

q8,m(i) =
1

Nb(i)

Nb(i)∑
j

Y8,m(ri,j) (S1)
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Y8,m are the spherical harmonics and ri,j connects particles i and j. Following Lechner et

al.S30 we then compute an averaged form of this local bond order parameter by averaging

the local q8,m(i) vectors over the particle i and its surroundings:

q̄8(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q8,m(i)|2 (S2)

where

q̄8,m(i) =
1

Ñb(i)

Ñb(i)∑
k=0

Y8,m(k) (S3)

and ˜Nb(i) are the neighbours of particle i

0.1 0.2 0.3 0.4 0.5
q8

0

5

10

15

20

FIG. S7. q̄8 distributions for ideal cases of pristine NaCl lattcice (light blue) and solvated Na/Cl

ions (dark blue).

Computation of these bond order parameters was performed using the FreudS31 python

package.

Coordination Numbers and clusters

Computation of all coordination numbers and clusters were performed using Plumed,S32

and analysis carried out using Python. The CN of an atom i with a set of atoms in A is
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defined by:

CNi =
∑
j∈A

sij (S4)

where sij is a smooth switching function with a range of [0,1]:

sij =

 1−
(

rij
r0

)6

1−
(

rij
r0

)12

 (S5)

rij is the interatomic distance between atom i and atom j. r0 for Na-O (2.80 Å) and Cl-H

(2.60 Å) were obtained from literature values,S33 while r0 for Na-Cl was taken such that the

CNs of the pristine lattice coincided with the integral up to the first minimum of the Na-Cl

RDF (3.5 Å). An ion was defined as dissolved if it has a Na-O/Cl-H CN less than 1 for

more than 8 ps. We show that this definition is not sensitive to changes in the time chosen

in Figure S8. The cluster size distributions were computed by detecting coordinated ions

Tdiss = 0.8 ps Tdiss = 8 ps Tdiss = 80 ps

0 0.2 0.4 0.6 0.8 1
Time (ns)

FIG. S8. Sensitivity of dissolution behaviour of ions based on definition of time spent with CN<1.

using a threshold of a ion-ion CN > 2, and then using these atoms as input for a depth first

search graph reduction algorithm to identify the sets of ions clustered together.

To compute the surface area to volume ratio of the dissolving crystal, a DFS algorithm

was implemented using the Freud Python packageS31 in order to identify the ions in the
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largest cluster at a given time. The convex hull of this set of points was then obtained

(provided there were > 3 ions in the cluster), and the surface area to volume ratio of the

hull was computed.

S5. ADDITIONAL RESULTS

MLP

Results from identical simulations as described above for the C-NNP at 2.48 mol/kg NaCl

concentration at 400 K are shown in Figure S9. The additional results for the 1.42 mol/kg

and 2.48 mol/kg trajectories at 330 K are also shown in Figure S9.
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FIG. S9. Crystal size, q̄8 and surface area:volume ratio for ten simulated trajectories at 400 K

(2.48 mol/kg) and 330 K (2.48 mol/kg, 1.42 mol/kg and 5.61 mol/kg).

FF

Results from identical simulations as described above for the C-NNP at 1.42 mol/kg and

2.48 mol/kg at 330 K are shown in Figure S10 for a JC/SCP/E force-field model.

S20



0

20

40

60

Cr
ys

ta
l s

ize

330 K 2.48 mol/kg 330 K 1.42 mol/kg

0.1

0.2

0.3

0.4
q 8

0.0 0.2 0.4 0.6 0.8
Time [ns]

0.5

0.6

0.7

0.8

Su
rfa

ce
 a

re
a:

 V
ol

um
e

0.0 0.2 0.4 0.6
Time [ns]
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JC/SPC/E at 330 K (2.48 mol/kg and 1.42 mol/kg).
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Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, “CP2K: An

electronic structure and molecular dynamics software package - Quickstep: Efficient and

accurate electronic structure calculations,” J. Chem. Phys. 152, 194103 (2020).

S22F. G. Fumi and M. P. Tosi, “Ionic sizes and born repulsive parameters in the NaCl-type

alkali halides—I: The Huggins-Mayer and Pauling forms,” J. Phys. Chem. Solids 25,

31–43 (1964).

S23R. M. Lynden-Bell and J. C. Rasaiah, “From hydrophobic to hydrophilic behaviour: A

simulation study of solvation entropy and free energy of simple solutes,” J. Chem. Phys.

107, 1981–1991 (1997).

S24A. L. Benavides, J. L. Aragones, and C. Vega, “Consensus on the solubility of NaCl

in water from computer simulations using the chemical potential route,” The Journal of

Chemical Physics 144, 124504 (2016).

S25S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements

H-Pu,” J. Chem. Phys. 132, 154104 (2010).

S26S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian pseudopoten-

tials,” Phys. Rev. B 54, 1703–1710 (1996).

S27J. VandeVondele and J. Hutter, “Gaussian basis sets for accurate calculations on molec-

ular systems in gas and condensed phases,” J. Chem. Phys. 127, 114105 (2007).

S28G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescal-

ing,” J. Chem. Phys. 126, 14101 (2007).

S23

http://dx.doi.org/10.1021/ACS.JPCLETT.7B00358
http://dx.doi.org/ 10.1063/5.0031215/14059259/034111_1_ACCEPTED_MANUSCRIPT.PDF
http://dx.doi.org/ 10.1063/5.0031215/14059259/034111_1_ACCEPTED_MANUSCRIPT.PDF
http://dx.doi.org/10.1063/5.0007045
http://dx.doi.org/ 10.1016/0022-3697(64)90159-3
http://dx.doi.org/ 10.1016/0022-3697(64)90159-3
http://dx.doi.org/10.1063/1.474550
http://dx.doi.org/10.1063/1.474550
http://dx.doi.org/10.1063/1.4943780
http://dx.doi.org/10.1063/1.4943780
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1063/1.2770708
http://dx.doi.org/10.1063/1.2408420


S29P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Bond-orientational order in liquids

and glasses,” Phys. Rev. B 28, 784–805 (1983).

S30W. Lechner and C. Dellago, “Accurate determination of crystal structures based on av-

eraged local bond order parameters,” J. Chem. Phys. 129, 114707 (2008).

S31V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings, J. A. Anderson, and

S. C. Glotzer, “freud: A software suite for high throughput analysis of particle simulation

data,” Comput. Phys. Commun. 254, 107275 (2020).

S32M. Bonomi, G. Bussi, C. Camilloni, G. A. Tribello, P. Banáš, A. Barducci, M. Bernetti,
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D. W. Swenson, P. Tiwary, O. Valsson, M. Vendruscolo, G. A. Voth, and A. White,

“Promoting transparency and reproducibility in enhanced molecular simulations,” Nat.

Methods 16, 670–673 (2019).

S33L.-M. Liu, A. Laio, and A. Michaelides, “Initial stages of salt crystal dissolution deter-

mined with ab initio molecular dynamics,” Phys. Chem. Chem. Phys. 13, 13162–13166

(2011).

S24

http://dx.doi.org/ 10.1103/PhysRevB.28.784
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/ 10.1016/j.cpc.2020.107275
http://dx.doi.org/10.1038/s41592-019-0506-8
http://dx.doi.org/10.1038/s41592-019-0506-8
http://dx.doi.org/10.1039/C1CP21077G
http://dx.doi.org/10.1039/C1CP21077G

	Supporting Information for: Crumbling Crystals: On the Dissolution Mechanism of NaCl in Water 
	Contents
	Selecting DFT functional
	Development of Machine Learning Potential
	Automated Work Flow
	Details of Model
	Validation
	2 2 2 NaCl nanocrystal
	Validation of Dissolution Process

	Long-range Effects

	Molecular dynamics simulations
	System setups
	Simulation details
	Force field pre-equilibration details
	AIMD simulation details


	Analysis Details
	Steinhardt order parameters
	Coordination Numbers and clusters

	Additional Results
	MLP
	FF

	References


