Supplementary Information

The Role of Spatial Arrangement of Aromatic Rings on the Binding of *N*,*N*'-Diheteroaryl Guanidine Ligands to the G2C4/G2C4 motif DNA

Eitaro Murakami,^a Tomonori Shibata,*^a Megumi Tomemori,^b Gota Kawai,^b and Kazuhiko Nakatani*^a

Contents:

Table S1	Relative potential energy (kcal/mol) of the conformers of DQG, D3iQG, D1iQG, Q3iQG, and DQzG						
	at ωB97XD/6-31G(d, p) level.	Page 2					
Table S2.	Summary of superimposition of ring A and B and expected H-bonding pattern in DQzG.						
		Page 3					
Table S3.	The apparent rate constants (k_{aapp} , k_{dapp}) and dissociation constant (K_{Dapp}) of ligands binding to 5'-						
	Biotinylated G2C4/G2C4 DNA assumed 1:1 binding model by BIAevaluation software.						
		Page 4-6					
Figure S1.	Planar conformers in (a) DQG, (b) D3iQG, (c) D1iQG, (d) Q3iQG, (e) DQzG, and (f) DQU and a					
	representative conformer in (g) DNpG obtained from quantum mechanical calculations.						
		Page 7, 8					
Figure S2.	2. Thermal melting profiles of G2C4/G2C4-dsDNA in the presence (solid line) and absence (dott						
	line) of ligands.	Page 9					
Figure S3.	SPR single cycle kinetic analyses of ligand binding to GCATGGCCCCTACGTTTTCGTAGGGGGCCATGC-3'.	the DNA hairpin 5'- Page 10					
		C					
Figure S4.	SPR single cycle kinetic analyses of ligand binding to the fully	matched DNA hairpin 5'-					
	(GGCCCC)9-3'.	Page 11					
Figure S5. Spatial alignment comparison of (a) ring A and (b) ring B of DQG analogs upon hydrogen bonding							
	to cytosine.	Page 12					
Synthesis o	f ligands and ¹ H- and ¹³ C-NMR						

Page 13

	DQG	D3iQG	D1iQG	Q3iQG	DQzG	DQU	DNpG
^a The number of conformers	21	19	32	36	11	9	32
Rank 1	^b 0.00	0.00					
2	^b 2.24	^b 2.17	^b 3.41	^b 0.13	^b 0.46	^b 4.33	0.01
3	9.37	7.27	7.25	^b 2.28	^b 1.03	^b 7.02	0.01
4	9.44	7.50	9.21	7.59	^b 1.18	7.04	0.24
5	10.59	8.72	10.35	7.81	^b 1.42	12.34	0.25
6	16.48	13.58	14.37	8.78	^b 2.22	14.72	2.06
7	17.22	14.34	16.03	9.20	^b 2.41	20.08	2.96
8	17.79	14.40	16.35	9.29	16.45		3.33
9	17.82	15.00	16.45	10.74	16.92		
10	17.84		16.75	15.17			
11	18.56		16.88	15.83			
12			17.15	15.96			
13				16.20			
14				16.26			
15				16.90			
16				17.29			

Table S1. Relative potential energy (kcal/mol) of the conformers of DQG, D3iQG, D1iQG, Q3iQG, and DQzG at ω B97XD/6-31G(d, p) level.

^aThe conformers with the same energy (converged same structures) are not described.

^bPlanar conformers

	DQG			DQzG		
	conf-1	conf-1	conf-2	conf-3	conf-4	conf-5
ring A ^a	-	0	1	0	0	1
ring B ^a	-	2	2	1	1	1
H-	DD/	ADD/	ADD/	ADD/	ADD/	ADD/
bonding ^b	AA	DAA	DAA	DAA	DAA	DAA
$\Delta T_{\rm m}$ (°C)	19.5			20.2		

Table S2. Summary of superimposition of ring A and B and expected H-bonding pattern in DQzG.

^aThe number of ring A and B overlapped with that of DQG conf-1. ^bHydrogen bonding pattern between DQG analogs and cytosine.

Conf-4 and 5 of DQzG were excluded because they have abundance ratios of 7 and 5%, respectively, in quantum mechanical calculations (Table S1), require a factor contributing 0.5~1 kcal/mol more stabilized energy for G2C4/G2C4 unit in dsDNA than conf-1 and 2, and overlap only one of two ring Bs more important than ring As with conf-1 of DQG upon hydrogen bonding to cytosine (Figure S5 and Table S2).

Analyte	k _{aapp} (1/Ms)	SE (kaapp)	k _{dapp} (1/s)	SE (kaapp)	K_{Dapp} (M)	Chi ² (RU ²) ^a
DQG	9.94E+04	1.70E+03	0.1031	0.0019	1.04E-06	1.11
D3iQG	2.30E+04	9.70E+02	0.2361	0.0025	1.03E-05	1.27
D1iQG	8.24E+04	2.00E+03	0.2851	0.0035	3.46E-06	0.608
Q3iQG	9.09E+04	1.00E+03	0.1255	0.00072	1.38E-06	1.29
DQzG	5.40E+05	4.80E+03	0.03382	0.00013	6.27E-08	2.91

Table S3. The apparent rate constants (k_{aapp} , k_{dapp}) and dissociation constant (K_{Dapp}) of ligands binding to 5'-Biotinylated G2C4/G2C4 DNA assumed 1:1 binding model by BIAevaluation software.

^aA measure of the closeness of fit, calculated as the mean squared residual of the difference between the measured data and the fitting curve.

D1iQG: The fitting curve (black line), the sensorgram at 0.025 - 0.4 μ M (red line), and 0.25 - 4.0 μ M (green line).

In SPR data analysis of DQzG binding to the hairpin RNA containing G2C4/G2C4, we can estimate the binding stoichiometry by using the equation and values:

 $R_{max} = MW_A \times R_L / MW_L \times n$,

where in our experiments

n = Stoichiometric ratio (number of binding sites per immobilized RNA)

 R_{max} (RU) = Maximum binding response, and were about 30 RU

 R_L (RU) = immobilization level, and was 515 RU

 MW_L (Da) = Molecular weight of RNA, as was 10927 Da.

 MW_A (Da) = Molecular weight of DQG analogues, and was 315 Da.

DQG conformer-1

DQG conformer-2

D3iQG conformer-1

D3iQG conformer-2

D1iQG conformer-2

(d)

D1iQG conformer-1

Q3iQG conformer-1

Q3iQG conformer-2

Q3iQG conformer-3

Figure S1. Planar conformers in (a) DQG, (b) D3iQG, (c) D1iQG, (d) Q3iQG, (e) DQzG, and (f) DQU and a representative conformer in (g) DNpG obtained from quantum mechanical calculations.

^aThe entire molecule is distorted with two intramolecular hydrogen bonds.

Figure S2. Thermal melting profiles of G2C4/G2C4-dsDNA in the presence (solid line) and absence (dotted line) of ligands, (a) DQG, (b) D3iQG, (c) D1iQG, (d) Q3iQG, (e) DQzG, (f) QG, (g) DNpG, and (h) DQU.

Figure **S3**. SPR single cycle kinetic analyses of ligand binding DNA hairpin 5'to the GCATGGCCCCTACGTTTTCGTAGGGGCCATGC-3'. Ligands were applied to the DNA-immobilized surface for 60 seconds, and the sensor surface was subsequently washed with the running buffer for 60 s before the next injection of the ligand. The ligands (a) DQG, (b) D3iQG, (c) D1iQG, (d) Q3iQG, and (e) DQzG were sequentially added at 0.025, 0.050, 0.1, 0.2, 0.4 µM (black line) and 0.25, 0.50, 1.0, 2.0, 4.0 µM (red line).

Figure S4. SPR single cycle kinetic analyses of ligand binding to the DNA repeat 5'-(GGCCCC)9-3'. Ligands were applied to the DNA-immobilized surface for 60 seconds, and the sensor surface was subsequently washed with the running buffer for 60 s before the next injection of the ligand. The ligands (a) DQG, (b) D3iQG, (c) D1iQG, (d) Q3iQG, and (e) DQzG were sequentially added at 0.025, 0.050, 0.1, 0.2, 0.4 μ M (black line) and 0.25, 0.50, 1.0, 2.0, 4.0 μ M (red line).

Figure S5. Spatial alignment comparison of (a) ring A and (b) ring B of DQG analogs upon hydrogen bonding to cytosine. DQG conf-1 was superimposed with DQzG conf-3, conf-4, and conf-5 with respect to cytosine. Ring A in (a) or ring B in (b) of DQG conf-1 was colored in cyan, whereas those of others are colored in magenta. In the superimposed figures, the overlapped ring A or B is shown only in cyan; otherwise, both cyan and magenta-colored ring A or B are visible. The numbers in parentheses indicate the energy difference (kcal/mol) from the lowest energy conformation. Plus sings (+) were omitted from the superimposed structures for clarity.

Synthesis of ligands

Synthesis of D3iQG

A mixture of guanidine nitrate (373.1 mg, 3.06 mmol), Pd(OAc)₂ (0.61 mmol, 137.2 mg), SPhos (1.22 mmol, 501.7 mg) and Cs₂CO₃ (9.17 mmol, 2.99 g) in 1,4-dioxane (25.0 mL) was heated at 100 °C for 1 h under argon atmosphere. And 3-chloroisoquinoline (500.0 mg, 3.06 mmol) in 1,4-dioxane (25.0 mL) was added and heated at 100 °C for 45 h. The crude product was purified by silica gel chromatography (AcOEt and CHCl₃/MeOH = 1:0~10:1). The crude product was removed the solvent, diluted with H₂O and purified by HPLC (eluent: CH₃CN and 0.1% AcOH) to yield pure D3iQG (7.2 mg, 2%). ¹H-NMR (CD₃OD, 700 MHz) δ = 9.16 (s, 2H), 8.07 (d, *J* = 8.2 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 7.1 Hz, 2H), 7.58-7.55 (m, 4H). ¹³C-NMR (CD₃OD, 175 MHz) δ = 154.72, 151.48, 149.95, 139.56, 132.83, 129.10, 127.54, 127.29, 127.13, 109.10. HRMS (ESI) Calculated. for C₁₉H₁₅N₅: 314.1400 [C₁₉H₁₅N₅+H]⁺, Found 314.1390.

Synthesis of D1iQG

A mixture of guanidine nitrate (373.1 mg, 3.06 mmol), Pd(OAc)₂ (0.61 mmol, 137.2 mg), XPhos (1.22 mmol, 582.8 mg) and Cs₂CO₃ (9.17 mmol, 2.99 g) in 1,4-dioxane (25.0 mL) was heated at 100 °C for 1 h under argon atmosphere. And 1-chloroisoquinoline (500.0 mg, 3.06 mmol) in 1,4-dioxane (25.0 mL) was added and heated at 100 °C for 21 h. The crude product was purified by silica gel chromatography (AcOEt and CHCl₃/MeOH = 1:0~10:1). The crude product was removed the solvent, diluted with H₂O and purified by HPLC (eluent: CH₃CN and 0.1% AcOH) to yield pure D1iQG (3.0 mg, 0.3%). ¹H-NMR (CD₃OD, 600 MHz) δ = 8.61 (d, *J* = 8.2 Hz, 2H), 8.21 (d, *J* = 5.5 Hz, 2H), 7.84 (d, *J* = 8.2 Hz, 2H), 7.75 (t, *J* = 7.2 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 5.5 Hz, 2H). ¹³C-NMR (CD₃OD, 175 MHz) δ = 170.33, 156.81, 139.97, 139.10, 131.67, 128.10, 127.93, 125.40, 115.71. HRMS (ESI) Calculated. for C₁₉H₁₅N₅: 314.1400 [C₁₉H₁₅N₅+H]⁺, Found 314.1391.

Synthesis of Q3iQG

A mixture of 1-(quinolin-2-yl)guanidine (447.6 mg, 2.40 mmol), $Pd(OAc)_2$ (0.96 mmol, 216.0 mg), XPhos (1.92 mmol, 917.2 mg) and Cs_2CO_3 (7.21 mmol, 2.35 g) in 1,4-dioxane (20.0 mL) was heated at 110 °C for 1 h under argon atmosphere. And 3-chloroisoquinoline (393.2 mg, 2.40 mmol) in 1,4-dioxane (20.0 mL) was added and heated at 100 °C for 45 h. The crude product was purified by silica gel chromatography (AcOEt/Hex = 1:1 and CHCl₃/MeOH = 1:0~10:1). The crude

product was removed the solvent, diluted with H₂O and purified by HPLC (eluent: CH₃CN and 0.1% AcOH) to yield pure Q3iQG (34.3 mg, 6%). ¹H-NMR (CD₃OD, 700 MHz) δ = 9.12 (s, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.82-7.77 (m, 3H), 7.66-7.61 (m, 2H), 7.56 (s, 1H), 7.43 (t, *J* = 7.3 Hz, 1H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.15 (d, *J* = 8.9 Hz, 1H). ¹³C-NMR (DMSO-D6, 175 MHz) δ = 158.59, 154.25, 150.11, 145.70, 137.87, 137.35, 130.90, 129.53, 127.89, 127.52, 126.30, 125.71, 124.77, 124.36, 123.99, 123.63, 118.646, 107.36, 99.51. HRMS (ESI) Calculated. for C₁₉H₁₅N₅: 314.1400 [C₁₉H₁₅N₅+H]⁺, Found 314.1400.

Synthesis of DQzG

A mixture of guanidine nitrate (148.3 mg, 1.22 mmol), 2-chloroquinazoline (200.0 mg, 1.22 mmol), Pd(OAc)₂ (0.24 mmol, 54.6 mg), XPhos (0.49 mmol, 231.7 mg) and Cs₂CO₃ (3.65 mmol, 1.19 g) in 1,4-dioxane (6.0 mL) was heated at 100 °C for 20 h under argon atmosphere. The reaction mixture was added to water and the solvent was evaporated. The resulting mixture was added to chloroform and washed with water and brine. The organic layer was dried over MgSO₄ and evaporated to dryness. The crude product was removed the solvent, diluted with H₂O and purified by HPLC (eluent: CH₃CN and 0.1% AcOH) to yield pure DQzG (11.8 mg, 6%). ¹H-NMR (CD₃OD, 700 MHz) δ = 9.36 (s, 2H), 7.98 (d, *J* = 7.9 Hz, 2H), 7.91 (dt, *J* = 7.4, 1.3 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.53 (t, *J* = 7.2 Hz 2H). ¹³C-NMR (CD₃OD, 175 MHz) δ = 163.88, 160.28, 157.37, 151.29, 136.18, 128.99, 127.04, 126.61, 122.63. HRMS (ESI) Calculated. for C₁₇H₁₃N₇: 316.1305 [C₁₇H₁₃N₇+H]⁺, Found 316.1296.

Synthesis of DQU

A solution of triphosgene (82.3 mg, 0.28 mmol) in 3.0 mL of CH₂Cl₂ was added to a solution of 2-aminoquinoline (0.20 g, 1.39 mmol) and 4-dimethylaminopyridine (20.3 mg, 1.67 mmol) in 3 mL of CH₂Cl₂. The resulting solution was stirred at room temperature for 9 h. The cold water was added to the reaction solution. The resulting mixture was added to chloroform and washed with water and brine. The organic layer was dried over MgSO₄ and evaporated to dryness. The crude product was purified by silica gel chromatography (CHCl₃/MeOH = 10:1) to give DQU (11.1 mg, 13%). ¹H-NMR (400 MHz, DMSO-d6) δ = 11.52 (br), 8.37 (d, *J* = 9.2 Hz, 1H), 7.94-7.88 (m, 3H), 7.76 (td, *J* = 7.6, 1.4 Hz, 1H), 7.51 (td, *J* = 7.6, 1.4 Hz, 1H). ¹³C-NMR (151 MHz, DMSO-d6) δ = 152.8, 152.4, 146.2, 139.3, 130.8, 128.4, 127.2, 125.6, 125.3, 114.3. HRMS (ESI) Calculated. for C₁₉H₁₄O: 315.1240 [C₁₉H₁₄O+H]⁺, Found 315.1242.

Synthesis of DNpG

A mixture of guanidine nitrate (118.5 mg, 0.97 mmol), 2-bromonaphthalene (200.0 mg, 0.97 mmol), Pd(OAc)₂ (0.19 mmol, 43.6 mg), XPhos (0.39 mmol, 185.0 mg), and Cs₂CO₃ (5.83 mmol, 1.90 g) in 1,4-dioxane (4.0 mL) was heated at 70 °C for 24 h under argon atmosphere. The reaction mixture was added to water and the solvent was evaporated. The resulting mixture was added to chloroform and washed with water and brine. The organic layer was dried over MgSO₄ and evaporated to dryness. The crude product was purified by amino silica gel chromatography (Hex/AcOEt = 1:1) to give DNpG (19.4 mg, 13%). ¹H-NMR (CD₃OD, 600 MHz) δ = 7.82 (dd, *J* = 8.8, 1.9 Hz, 2H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.71 (s, 2H), 7.39-7.43 (m, 4H), 7.35-7.36 (m, 2H). ¹³C-NMR (CD₃OD, 151 MHz) δ = 153.14, 142.87, 135.92, 131.67, 129.84, 128.59, 128.10, 127.17, 125.28, 124.07, 119.18. HRMS (ESI) Calculated. for C₂₁H₁₇N₃: 312.1495 [C₂₁H₁₇N₃+H]⁺, Found 312.1491.

¹H NMR of D3iQG

¹³C NMR of D3iQG

¹H NMR of D1iQG

¹³C NMR of D1iQG

¹H NMR of Q3iQG

¹³C NMR of Q3iQG

¹H NMR of DQzG

¹³C NMR of DQzG

¹H NMR of DQU

¹³C NMR of DQU

¹H NMR of DNpG

¹³C NMR of DNpG

