Supplementary Materials for

Tailoring Intersystem Crossing in Phosphorus-Corrole through Axial Chalcogenation: A Detailed Theoretical Study

Annette Mariya Tedy and Arun K Manna*

Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India

*Corresponding Author E-mail: <u>arun@iittp.ac.in</u>

Table of Contents:

Section A: Optimally Tuned Range-Separated Hybrid (OT-RSH)
Section B: Ground-state structural properties of solvated PC and X=PCs in toluene
Section C: Ground- and excited-state electronic structures of PC and X=PCs in tolueneS3-S5
Table S1: OT-RSH calculated vertical energies (E^{ν}) with important FMOs contributionsS5-S7
Table S2: OT-RSH calculated vertical, adiabatic and 0-0 energies of PC and X=PCs in tolueneS7
Table S3: Calculated ΔE_{S-T} , SOC and k_{ISC} for $S_1 \rightarrow T_n$ ISC of PC and X=PCs in tolueneS7-S8
Table S4: Calculated effective Huang-Rhys factor (S_{eff}) and effective high-frequency vibrational mode ($\langle \omega_{eff} \rangle$) for $S_1 \rightarrow T_n$ ISC processes for all solvated PC and X=PCs in tolueneS8
Table S5: OT-RSH calculated emission energies, fluorescence rate constant (k_F) and phosphorescence rate constant (k_P) for solvated PC and X=PCsS8-S9
Table S6: 0-0 corrected T_n energies, SOC and non-radiative rate (k_{nr}) for $T_n \rightarrow S_0$ process for PC andX=PCs in toluene
Table S7: Calculated triplet lifetime (τ_T) at optimized T_1 geometry of studied PC and X=PCsS9
Figure S1: Natural bond orbitals and interaction energies of PC and X=PCs in tolueneS10
Figure S2: OT-RSH calculated FMOs of solvated PC and X=PC systems in tolueneS10
Figure S3: OT-RSH calculated FMOs of solvated S=PC and Se=PC systems in tolueneS11
Figure S4: RMSD and ΔSCF energy differences between ground-state and few excited states of PC and X=PC systems toluene
Figure S5: Calculated FMOs involved in low-lying excited-states of PC and X=PCs in tolueneS13
References: Bibliography for Supporting Information Contents

Section A: Optimally Tuned Range-Separated Hybrid (OT-RSH)

For OT-RSH implementation, ω B97X-D RSH functional¹ is nonempirically and optimally tuned for each system to obtain an optimal range-separation parameter (ω^*) by minimizing the following error measure ($J^2(\omega)$)^{2, 3} enforcing the ionization potential (IP) theorem:⁴

$$J^{2}(\omega) = \sum_{i=N}^{N+1} [IP^{\omega}(i) + E_{H}^{\omega}(i)]^{2}$$

Where, N is the number of electrons, and i = N, N+1 refers to neutral and anion systems respectively. $IP^{\omega}(i)$ and $E_{H}^{\omega}(i)$ are the ionization potential and the energy of HOMO of both neutral (i = N) and anion (i = N+1). The resultant RSH functional is customarily termed as the OT-RSH. Here we note that other parameters of the OT- ω B97X-D RSH (i.e., ω^* B97X-D) are kept fixed at their default values in the OT-RSH implementation. These default set of parameters like the amount of short-range Fock exchange (~22%) as present in ω B97X-D¹ have been shown to produce a robust and balanced description of both locally-excited (LE) and charge-transfer (CT) electronic states.³

We would like to emphasise that the optimal tuning is undertaken in the gas phase only, as the optimal tuning in PCM will lead to unphysically small ω values.⁵ Although this caveat can be fixed by including dielectric screening in the RSH functional form itself,⁶ this screened-RSH implementation is inevitable only for condensed-phase environments like thinfilm/solids.⁷⁻¹¹ Moreover, the optimal ω tuned in the gas-phase can be translated to the solution phase, provided that there are only minimal orbital interactions between the solute and the solvent.¹² This is valid for the solvated systems in toluene studied in this work and the implicit solvation models like PCM adopted for accounting of the solvent effects. Importantly, OT-RSH has been shown to produce reliable and accurate description of both CT and LE states for a large variety of solvated molecules.^{2, 3}

Section B: Ground-State Structural Properties of solvated PC and three X=PCs

In this section, we compare and contrast the ground-state geometries of all the studied X=PCs and PC that are fully optimized using dispersion corrected DFT in toluene (see Figure 1 from main article for all relaxed structures). The difluorophenyl meso-substituents are almost perpendicular to the macrocycle ring with calculated dihedral angles ranging from ~75° to ~81° in accordance with the previous literature findings reported for both FBC^{13, 14} and other PC analogues.^{15, 16} This essentially indicates limited orbitals contribution towards enhancing

corrole π -conjugation by the meso-substituents. As shown in main article Figure 1, two different sets of N-P bond lengths are originated from the structural asymmetry created by the direct α - α pyrollic linkage of the corrole ring. Further, only a negligible increase in the N-P bond length is found in going from O to Se, suggesting minimal influence of the chalcogen on the corrole core structural properties. However, an increasing trend in the P=X bond length is found going from O to Se due to larger size of the chalcogen down the group. This is accompanied by a gradually increased ground-state electric dipole moment ($\mu = 4.0 - 4.7$ D) down the chalcogen-group, which is even larger than that in PC. An in-depth analysis reveals that μ of the P=X unit ($\mu_{P=X}$) is directed opposite to that of the corrole unit and thereby, partially reduces the corrole dipole. As a result, an increased μ of X=PC in going from X = O to Se is attributed to the decreased $\mu_{P=X}$, which is due to the smaller charge-separation as evident from the natural population analysis derived charges listed in Figure 1 of main article. The reduction in the partial charges down the chalcogen-group is due to the gradually decreased electronegativity of the associated X. On the other hand, much smaller charge on the central P in PC due to lower oxidation state results in comparatively lesser μ .

Section C: Ground and Excited States Electronic Structures of solvated PC and three X=PCs considered in this study

Electronic Structures at Ground-State Geometries: OT-RSH calculated low-lying FMOs are examined to explore and understand the ground-state electronic properties of the PC and X=PCs in toluene (see Figure S2 for FMOs iso-surfaces and their energies). Like porphyrin, corroles absorption bands also follow the celebrated Gouterman's four orbital model^{17, 18} and therefore, we specifically looked at following four low-energy MOs: HOMO-1, HOMO for the occupied states and LUMO, LUMO+1 for the unoccupied states. All the studied X=PCs maintain the degeneracy of the HOMO and HOMO-1 orbitals as similar to the porphyrin analogues,^{19, 20} whereas the orbital degeneracy is lifted in the case of LUMO and LUMO+1. On contrary, PC shows non-degenerate FMOs. The orbital picture found here for X=PCs is markedly different from the PCs and FBCs, where no such degeneracy was observed due to the symmetry-breaking. These results indicate that the oxidation of the central P by the chalcogens brought about a significant modification of the corrole electronic structures, which is reflected by a pair of near degenerate occupied and non-degenerate unoccupied orbitals. Such orbital degeneracy may have implications in the low-lying optical excitations of the X=PCs involving these FMOs as discussed in the main article text.

PC shows a HOMO-LUMO gap (ΔE_{H-L} hereafter) of ~4.8 eV. Among the four FMOs examined, the HOMO of PC acquires substantial P contribution (~25%), suggesting both macrocyclic-ring and P-centered oxidation. On the other hand, relatively larger ΔE_{H-L} of ~5.1-5.2 eV is found for its oxidized product X=PCs with much lowered P contribution to the FMOs. Further, it is also interesting to note that while the HOMO, HOMO-1 energies remain fairly constant among the studied X=PCs, the LUMO and LUMO+1 gets slightly stabilized by ~0.1 eV going from O to S. However, no appreciable change in the FMO energies is found between S=PC and Se=PC owing to the similar atomic radii and comparable electronic polarizabilities of S and Se. The ΔE_{H-L} also follows the same trend with a slight reduction going from O to S/Se. Overall, all three X=PCs show almost similar ΔE_{H-L} of ~5.1-5.2 eV. Like the analogous meso-substituted FBCs,¹⁴ PC and X=PCs also exhibit π -type electron density in the corrole core with negligible contribution from the meso-substituents.

Interestingly, the HOMO-1 and HOMO of O=PC qualitatively resembles with the HOMO and HOMO-1, respectively of both S=PC and Se=PC. Although HOMO and HOMO-1 are almost degenerate for X=PCs, the contributions of the core N atoms towards these FMOs are markedly different (see Figure S2). The HOMO-1 of O=PC and HOMO of S=PC and Se=PC appear to possess larger N contribution. While calculated percentage of N contributions to these FMOs is ~13-16%, the HOMO of O=PC and HOMO-1 of S=PC and Se=PC acquire much smaller N contribution of ~4-6%. On the other hand, the percentage contribution of P ranges from 0.1 to 2.9% in the studied X=PC systems. Compared to this, parent PC shows P contribution ranging from ~0.2 to 24.5% and its biaxially fluorinated derivatives were shown to have only ~0.6% P contribution.¹⁵ Varied extent of N and P contributions suggest that the core N may have more significance in improving the SOC via hetero-atom effect than the core P. Nevertheless, since P is heavier than N, even relatively smaller %P contribution may have more weightage than the N-contribution as SOC $\propto Z^4$, where Z is the atomic number of any hydrogen-like atoms. We note that both %P and %N towards the FMOs slightly improve going from O to Se. Qualitatively similar trend is also seen for the percentage contribution of the chalcogens as well. But, a significantly larger chalcogen contribution of ~18.7% is only found for HOMO-1 of Se=PC compared to other studied X=PC systems. Further, deeper lying HOMO-3 and HOMO-2 acquire relatively large chalcogen contributions (31-70%) for all three X=PCs with the largest contribution found for Se=PC (see Figure S3). Therefore, excited states involving transitions from HOMO-

3/HOMO-2/HOMO-1 of Se=PC is expected to display larger SOC via virtue of the heavyatom effect as discussed in the main article text.

Electronic Structures at the Excited-State Geometries: As discussed in the main article text, excited-state molecular geometries of PC and three X=PCs are slightly different from the ground-state ones (see \triangle SCF and RMSD data from Figure S4). To examine the effect of excited-state nuclear reorganization on the electronic structure of the systems, we also analyse the FMOs at the respective optimized excited-state geometries as shown in SI Figure S5. It is interesting to note that at all of the excited-state geometries, the degeneracy of the HOMO-1 and HOMO is lifted for all the X=PCs. The ground-state electronic distribution (i.e., FMOs iso-surfaces) is qualitatively maintained at the excited-state geometries. But certain reordering between the HOMO-1 and HOMO is also seen due to the excited-state relaxation. For example, all the excited-state geometries of O=PC feature a HOMO that is similar to the HOMO-1 at the ground-state and a HOMO-1 similar to the ground-state HOMO (compare FMOs from SI Figure S2 and Figure S5). Similarly, HOMO-1 and HOMO of Se=PC at T_3 geometry resemble to HOMO and HOMO-1, respectively found at S_0 geometry. An improvement of the percentage chalcogen contribution to the FMOs is also seen at the excited-state geometries as compared to the ground-state for all the X=PCs. This is expected to impact the excited-state deactivation processes. Especially, since the ISC involves the equilibrium S_1 geometry the improved %chalcogen contribution found at this geometry may enhance the SOC for the ISC processes in the studied systems.

Table S1: Vertical (E^{ν}) energy of the first few excited singlets (S_n) and a few low-lying triplet excited states (T_n) with dipole oscillator strength (OS) given in bracket, calculated using TD-OT-RSH at the solvated Franck-Condon geometry (S_0) . Important occupied to unoccupied FMOs configurations (with major coefficients listed in bracket) at the S_0 geometry relevant to each excited-state are listed for solvated PC and three X=PCs in toluene. H and L represent HOMO and LUMO, respectively.

V-DC	Excited State	E^{ν} (eV)	Contributions of FMOs
A=PC	(OS)		
	$S_1(0.14)$	1.98	$H \rightarrow L (0.67)$
РС	$S_2(0.00)$	2.32	$\mathbf{H} \rightarrow \mathbf{L+1} \ (0.56); \mathbf{H-1} \rightarrow \mathbf{L} \ (0.42)$
10	$S_3(0.57)$	2.78	$\text{H-1} \rightarrow \text{L} (0.54); \text{H} \rightarrow \text{L+1} (0.39)$
	S_4 (0.24)	3.01	$\text{H-1} \rightarrow \text{L+1} (0.61)$

	<i>S</i> ₅ (1.04)	3.64	$H-2 \rightarrow L (0.61)$
	T_1	1.48	$H \rightarrow L (0.70)$
	<i>T</i> ₂	1.84	$H-1 \rightarrow L (0.65)$
	<i>T</i> ₃	1.92	$H \rightarrow L+1 (0.65)$
	T_4	2.39	$\text{H-1} \rightarrow \text{L+1} (0.68)$
	$S_1(0.11)$	2.45	H-1 → L (0.58); H → L+1 (0.39)
	S ₂ (0.08)	2.48	$H \rightarrow L (0.60); H-1 \rightarrow L+1 (0.36)$
	<i>S</i> ₃ (1.42)	3.36	$H \rightarrow L+1 \ (0.58); H-1 \rightarrow L \ (0.39)$
O=PC	S ₄ (1.22)	3.40	H-1 → L+1 (0.60); H → L (0.36)
	T_1	1.88	H-1 → L (0.65)
	<i>T</i> ₂	1.89	H → L (0.67)
	<i>T</i> ₃	2.31	$\text{H-1} \rightarrow \text{L+1} (0.68)$
	T_4	2.42	H → L+1 (0.67)
	T_5	3.64	H-3 → L (0.62)
	<i>T</i> ₆	3.66	$H-2 \rightarrow L (0.62)$
	<i>S</i> ₁ (0.11)	2.39	$H \rightarrow L (0.59); H-1 \rightarrow L+1 (0.38)$
-	$S_2(0.06)$	2.42	$\text{H-1} \rightarrow \text{L} (0.60); \text{H} \rightarrow \text{L+1} (0.36)$
	$S_3(0.01)$	2.80	H-2 → L (0.69)
	$S_4 (0.01)$	2.86	H-3 → L (0.67)
	$S_5(0.35)$	3.15	H-3 → L+1 (0.50); H-1 → L+1 (0.42)
	$S_6(0.76)$	3.30	$H \rightarrow L+1 (0.46); H-2 \rightarrow L+1 (0.39);$
			$H-1 \rightarrow L (0.33)$
S=PC	$S_7(0.37)$	3.32	H-2 → L+1 (0.56); H → L+1 (0.33)
	S ₈ (0.92)	3.37	H-3 → L+1 (0.48); H-1 → L+1 (0.41)
	<i>T</i> ₁	1.83	$H \rightarrow L (0.68)$
	<i>T</i> ₂	1.87	H-1 → L (0.69)
	<i>T</i> ₃	2.23	$H \rightarrow L+1 (0.69)$
	T_4	2.37	$\text{H-1} \rightarrow \text{L+1} (0.68)$
	T_5	2.75	$\text{H-3} \rightarrow \text{L} (0.54); \text{H-2} \rightarrow \text{L} (0.44)$
	T_6	2.75	$\text{H-2} \rightarrow \text{L} (0.54); \text{H-3} \rightarrow \text{L} (0.44)$
	$S_1(0.04)$	2.34	H-1 → L (0.60)
Se-DC	$S_2(0.11)$	2.36	H → L (0.58); H-1 → L+1 (0.35)
se-ru	$S_3(0.00)$	2.41	H-2 → L (0.69)
	<i>S</i> ₄ (0.01)	2.54	$\text{H-3} \rightarrow \text{L} (0.62)$

C (0, 02)	2.00	$II 2 \ VI + 1 \ (0.57) \ II 1 \ VI + 1 \ (0.20)$
$S_5(0.03)$	2.80	$H-3 \rightarrow L+1 (0.57); H-1 \rightarrow L+1 (0.39)$
$S_6(0.02)$	2.92	$\text{H-2} \rightarrow \text{L+1} (0.69)$
S_7 (1.06)	3.27	$H \rightarrow L+1 (0.56); H-1 \rightarrow L (0.33)$
<i>S</i> ₈ (1.17)	3.29	H-1 → L+1 (0.46); H-3 → L+1 (0.38);
		$H \rightarrow L (0.35)$
T_1	1.80	$H \rightarrow L (0.68)$
<i>T</i> ₂	1.86	H-1 → L (0.67)
<i>T</i> ₃	2.20	$H \rightarrow L+1 (0.65)$
T_4	2.35	$\text{H-1} \rightarrow \text{L+1} (0.65)$
T_5	2.38	H-2 → L (0.66)
<i>T</i> ₆	2.39	$H-3 \rightarrow L (0.63)$
T_7	2.76	$H-2 \rightarrow L+1 (0.69)$

Table S2: OT-RSH calculated vertical (E^{ν}) , adiabatic (E^{ad}) and 0-0 (E^{0-0}) energies of S_1 and relevant T_n states near or below S_1 for the studied PC and X=PC systems in toluene.

X=PC	States	<i>S</i> ₁	T_1	<i>T</i> ₂	<i>T</i> ₃	T ₄	<i>T</i> ₅	T ₆
РС	E^{ν} (eV)	1.98	1.48	1.84	1.92	-	-	-
	Ead (eV)	1.56	1.33	1.73	1.77	-	-	-
	E^{0-0} (eV)	1.56	1.28	1.75	1.72	-	-	-
	E^{ν} (eV)	2.45	1.88	1.89	2.31	2.42	-	-
O=PC	E^{ad} (eV)	2.41	1.73	1.74	2.01	2.12	-	-
	E^{0-0} (eV)	2.34	1.63	1.64	1.91	2.02	-	-
S=PC	E^{ν} (eV)	2.39	1.83	1.87	2.23	2.37	-	-
	E^{ad} (eV)	2.35	1.68	1.72	1.93	2.07	-	-
	E^{0-0} (eV)	2.28	1.58	1.62	1.83	1.97	-	-
	E^{ν} (eV)	2.34	1.80	1.86	2.20	2.35	2.38	2.39
Se=PC	<i>E^{ad}</i> (eV)	2.30	1.65	1.71	1.90	2.05	1.98	1.99
	E^{0-0} (eV)	2.24	1.56	1.62	1.80	1.95	1.88	1.89

Table S3: Calculated ΔE_{S-T} , SOC and k_{ISC} for $S_1 \rightarrow T_n$ ISC processes for PC and X=PCs in toluene. $\Delta E_{S-T} = E(S_1) - E(T_n)$ based on 0-0 energies and a positive ΔE_{S-T} refers to T_n below to S_1 .

$S_1 \rightarrow T_n$	РС	O=PC
-----------------------	----	------

	ΔE_{S-T}	SOC	k _{ISC}	ΔE_{S-T}	SOC	k _{ISC}	
	(eV)	(<i>cm</i> ⁻¹)	(<i>s</i> ⁻¹)	(eV)	(<i>cm</i> ⁻¹)	(<i>s</i> ⁻¹)	
$S_1 \rightarrow T_1$	0.28	0.18	1.28×10^{7}	0.71	0.16	2.75×10^{3}	
$S_1 \rightarrow T_2$	-0.19	0.99	1.83×10^{5}	0.70	0.89	1.08×10^{5}	
$S_1 \rightarrow T_3$	-0.16	1.90	3.42×10^{6}	0.43	0.75	3.21×10^{7}	
$S_1 \rightarrow T_4$	-	-	-	0.32	0.06	1.01×10^{6}	
		S=PC		Se=PC			
$S_1 \to T_n$	ΔE_{S-T}	SOC	k _{ISC}	ΔE_{S-T}	SOC	k _{ISC}	
	(eV)	(<i>cm</i> ⁻¹)	(<i>s</i> ⁻¹)	(eV)	(<i>cm</i> ⁻¹)	(<i>s</i> ⁻¹)	
$S_1 \rightarrow T_1$	0.70	2.45	9.88×10^{5}	0.68	135.68	4.29×10^{9}	
$S_1 \rightarrow T_2$	0.66	3.28	4.43×10^{6}	0.62	42.51	1.66×10^{9}	
$S_1 \rightarrow T_3$	0.45	3.28	9.11×10^{8}	0.43	68.58	3.97×10^{11}	
$S_1 \rightarrow T_4$	0.31	0.56	8.60×10^{7}	0.36	367.46	2.56×10^{13}	
$S_1 \rightarrow T_5$	-	-	-	0.35	494.25	5.06×10^{13}	
$S_1 \rightarrow T_6$	-	-	-	0.29	110.87	4.22×10^{12}	

Table S4: Calculated effective Huang-Rhys factor (S_{eff}) and effective high-frequency vibrational mode ($\langle \omega_{eff} \rangle$, in cm⁻¹) for relevant $S_1 \rightarrow T_n$ ISC processes for solvated PC and X=PCs in toluene.

	PC		O=PC		S=PC		Se=PC	
X=PC	S _{eff}	$<\omega_{eff}>$						
$S_1 \rightarrow T_1$	0.1023	1662	0.0280	1590	0.0322	1593	0.0293	1593
$S_1 \rightarrow T_2$	0.6306	1500	0.0280	1590	0.0322	1593	0.0293	1593
$S_1 \rightarrow T_3$	0.1023	1662	0.0594	1646	0.3413	1630	0.2365	1455
$S_1 \rightarrow T_4$	-	-	0.0594	1646	0.3413	1630	0.3679	1379
$S_1 \rightarrow T_5$	-	-	-	-	-	-	0.3679	1379
$S_1 \rightarrow T_6$	-	-	-	-	-	-	0.2365	1455

Table S5: Calculated fluorescence rate constants (k_F) and phosphorescence rate constant (k_P) from the relaxed bright S_n and T_n (n = 1,2), respectively for solvated PC and X=PCs in toluene. S_n/T_n vertical emission energies with dipole oscillator strength (values within bracket) calculated at the respective optimized solvated optically bright S_n and T_1 geometries for each of the X=PCs are also listed.

Systems	S ₁ (eV)	$k_F(s^{-1})$	S ₃ (eV)	$k_F(s^{-1})$	T ₁ (eV)	$k_P\left(s^{-1}\right)$	T ₂ (eV)	$k_P\left(s^{-1}\right)$
РС	0.97 (0.03)	1.34×10^{6}	-	-	1.19 (3.14 × 10 ⁻⁷)	34.8	-	-
O=PC	2.38 (0.17)	9.09×10^{7}	3.24 (1.47)	1.45×10^{9}	1.61 (1.31 × 10 ⁻⁸)	2.83	1.91 (3.32 × 10 ⁻⁸)	11.9
S=PC	2.31 (0.17)	8.52×10^{7}	-	-	1.57 (3.53 × 10 ⁻⁷)	72.5	1.89 (6.99 × 10 ⁻⁷)	2.45×10^2
Se=PC	2.28 (0.15)	7.38×10^{7}	-	-	1.55 (1.69 × 10 ⁻⁴)	3.40×10^4	1.88 (1.92 × 10 ⁻⁴)	6.65×10^{4}

Table S6: 0-0 corrected T_n (n = 1,2) energies and OT-RSH calculated SOC and k_{nr} for $T_n \rightarrow S_0$ (n = 1,2) ISC processes at solvated optimized T_1 geometry for solvated PC and three X=PCs in toluene.

		PC		O=PC			
$T_n \rightarrow S_0$	T _n	SOC	k _{nr}	T _n	SOC	k _{nr}	
	(eV)	(<i>cm</i> ⁻¹)	(s^{-1})	(eV)	(<i>cm</i> ⁻¹)	(s^{-1})	
$T_1 \rightarrow S_0$	1.28	1.89	4.02×10^2	1.63	0.29	2.22×10^{-1}	
$T_2 \rightarrow S_0$	-	-	-	1.64	0.21	9.87×10^{-2}	
		S=PC			Se=PC		
$T_n \rightarrow S_0$	T _n	S=PC SOC	k _{nr}	T _n	Se=PC SOC	k _{nr}	
$T_n \rightarrow S_0$	<i>T</i> _n (eV)	S=PC SOC (cm ⁻¹)	k_{nr} (s^{-1})	<i>T</i> _n (eV)	Se=PC SOC (<i>cm</i> ⁻¹)	k _{nr} (s ⁻¹)	
$T_n \to S_0$ $T_1 \to S_0$	<i>T_n</i> (eV) 1.58	S=PC SOC (cm ⁻¹) 2.57	<i>k</i> _{nr} (<i>s</i> ⁻¹) 59.95	<i>T_n</i> (eV) 1.56	Se=PC SOC (cm ⁻¹) 18.34	k_{nr} (s ⁻¹) 1.74 × 10 ³	

Table S7: Calculated triplet lifetimes (τ_T) for T_n (n = 1, 2) states at the optimized T_1 geometry for the studied PC and X=PCs in toluene.

System	T	1	<i>T</i> ₂		
System	$k_P + k_{nr} (s^{-1}) \qquad \tau_T (s)$		$k_P + k_{nr} \left(s^{-1} \right)$	$ au_T(s)$	
PC	4.37×10^2	2.29×10^{-3}	-	-	
O=PC	3.05	3.28×10^{-1}	12.00	8.33×10^{-2}	
S=PC	1.32×10^2	7.55×10^{-3}	2.51×10^2	3.99×10^{-3}	
Se=PC	3.57×10^4	2.80×10^{-5}	6.66×10^4	1.50×10^{-5}	

Figure S1: Natural bond orbitals displaying the donor-acceptor orbital interaction between the lone-pair (LP) of chalcogen (X) and different non-bonding orbitals (σ^* , δ^*), where σ and δ refer to the sigma and dative bond, respectively. An iso-value of 0.05 electrons/bohr³ is used for the iso-surfaces. Calculated second-order perturbation energy ($E^{(2)}$) and interaction energy (E_{int}) between the X and PC are also listed.

Figure S2: OT-RSH calculated FMO energies and iso-surfaces of the studied PC and X=PCs in toluene. HOMO (H-1), HOMO (H), LUMO (L), and LUMO+1 (L+1) are shown along with the HOMO-LUMO gap (ΔE_{H-L}) and percentage contributions of P (in red colour numbers) and chalcogen (in blue colour numbers) towards the FMOs. An iso-value of 0.02 electrons/bohr³ is used for the iso-surfaces.

Figure S3: OT-RSH calculated energies and iso-surfaces of HOMO-3 and HOMO-2 for the studied systems in toluene. H stands for HOMO. Percentage contributions of P (in red colour numbers) and chalcogen (in blue colour numbers) towards the FMOs are also shown. An iso-value of 0.02 electrons/bohr³ is used for the iso-surfaces. All energies are in eV.

Figure S4: Calculated RMSD and Δ SCF energy differences between the ground-state and the relevant excited-state geometries. Blue- and grey-colour represent the ground-state (S_0) and the relevant excited-state (S_1 or T_n) geometries.

Figure S5: OT-RSH calculated FMOs iso-surfaces and energies at the respective excitedstate geometries of the studied X=PC systems in toluene. H and L stand for the HOMO and LUMO, respectively. Percentage contributions of P and chalcogen toward the FMOs are listed in red- and blue-coloured numbers, respectively. An iso-value of 0.02 electrons/Bohr³ is used for the iso-surface plot.

References:

- J.-D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, *Phys. Chem. Chem. Phys.*, 2008, 10, 6615-6620.
- T. Stein, L. Kronik and R. Baer, Prediction of charge-transfer excitations in coumarinbased dyes using a range-separated functional tuned from first principles, *J. Chem. Phys.*, 2009, **131**, 244119.
- L. Kronik, T. Stein, S. Refaely-Abramson and R. Baer, Excitation gaps of finitesized systems from optimally tuned range-separated hybrid functionals, *J. Chem. Theory Comput.*, 2012, 8, 1515-1531.

- 4. J. F. Janak, Proof that $\frac{\delta E}{\delta n_i} = \varepsilon_i$ in density-functional theory, *Phys. Rev. B*, 1978, **18**, 7165-7168.
- T. B. de Queiroz and S. Kümmel, Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring rangeseparation tuning, *J. Chem. Phys.*, 2014, 141, 084303-084312.
- 6. L. Kronik and S. Kümmel, Dielectric screening meets optimally tuned density functionals, *Adv. Mater.*, 2018, **30**, 1706560.
- S. Bhandari, M. S. Cheung, E. Geva, L. Kronik and B. D. Dunietz, Fundamental gaps of condensed-phase organic semiconductors from single-molecule calculations using polarization-consistent optimally tuned screened range-separated hybrid functionals, *J. Chem. Theory Comput.*, 2018, 14, 6287-6294.
- S. Bhandari and B. D. Dunietz, Quantitative accuracy in calculating charge transfer state energies in solvated molecular complexes using a screened range separated hybrid functional within a polarized continuum model, *J. Chem. Theory Comput.*, 2019, 15, 4305-4311.
- A. K. Manna, S. Refaely-Abramson, A. M. Reilly, A. Tkatchenko, J. B. Neaton and L. Kronik, Quantitative prediction of optical absorption in molecular solids from an optimally tuned screened range-separated hybrid functional, *J. Chem. Theory Comput.*, 2018, 14, 2919-2929.
- 10. R. Ahmed and A. K. Manna, Origins of large Stokes shifts in a pyrene–styrene based push–pull organic molecular dyad in polar solvents and large electron mobility in the crystalline state: A theoretical perspective, *J. Phys. Chem. C*, 2022, **126**, 423-433.
- 11. Z. Zheng, D. A. Egger, J.-L. Brédas, L. Kronik and V. Coropceanu, Effect of solidstate polarization on charge-transfer excitations and transport levels at organic interfaces from a screened range-separated hybrid functional, *J. Phys. Chem. Lett.*, 2017, 8, 3277-3283.
- T. B. de Queiroz and S. Kümmel, Tuned range separated hybrid functionals for solvated low bandgap oligomers, J. Chem. Phys., 2015, 143, 034101.
- 13. J. F. B. Barata, G. P. M. S. Neves, M. A. F. Faustino, A. C. Tomé and J. A. S. Cavaleiro, Strategies for Corrole Functionalization, *Chem. Rev.*, 2017, 117, 3192-3253.

- 14. A. M. Tedy, R. Ahmed and A. K. Manna, Assessing Intersystem Crossing Rates in Donor- and/Acceptor-Functionalized Corroles: A Computational Study, J. Phys. Chem. A, 2023, 127, 3347-3355.
- 15. A. M. Tedy and A. K. Manna, Does the Intersystem Crossing Rate of β-Iodinated Phosphorus Corrole Depend on Iodine Numbers and/or Positions?, J. Phys. Chem. A, 2023, 127, 10118-1012.
- 16. A. Mahammed, K. Chen, J. Vestfrid, J. Zhao and Z. Gross, Phosphorus corrole complexes: from property tuning to applications in photocatalysis and triplet-triplet annihilation upconversion, *Chem. Sci.*, 2019, 10, 7091-7103.
- 17. N. S. Hush, J. M. Dyke, M. L. Williams and I. S. Woolsey, Electronic spectra of metal corrole anions, *J. Chem. Soc., Dalton Trans.*, 1974, 395-399.
- 18. A. Ghosh, T. Wondimagegn and A. B. J. Parusel, Electronic Structure of Gallium, Copper, and Nickel Complexes of Corrole. High-Valent Transition Metal Centers versus Noninnocent Ligands, J. Am. Chem. Soc., 2000, 122, 5100-5104.
- 19. M. Gouterman, Spectra of porphyrins, J. Mol. Spectrosc., 1961, 6, 138-163.
- M. Gouterman, G. H. Wagniére and L. C. Snyder, Spectra of Porphyrins. Part II. Four-Orbital Model, J. Mol. Spectrosc., 1963, 11, 108-115.