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Experimental section

1,4-Dioxane and N,N-Dimethylformamide were dried and distilled from sodium
and calcium hydride, respectively, under an atmosphere of dry nitrogen before use.
Compounds 1 and 3 were synthesized as previously reported.l'l Other reagents were
purchased from Sigma-aldrich, TCI, Energy Chemical and general sources and all
commercial materials were used as received without re-purification unless otherwise
stated.

"H NMR and '*C NMR spectra were recorded on Bruker Avance 600 MHz. Mass
spectrometry was performed using a Bruker Daltonics instrument and SolariX 7.0T.
High-resolution mass spectra were performed on Thermo Fisher Orbitrap Exploris 120
or Thermo Fisher Orbitrap LC/MS (Q Exactive). UV-Vis absorption spectra were
performed on Perkin Elmer Lamda 750s spectrometer. Cyclic voltammetry (CV) was
carried out in degassed CHCl; with BuN"PF4 (0.1 mol/L) as electrolyte on a CHI600E
electrochemical analyser (CH Instruments, Inc., China). A three-electrode system was
used with Pt disc, Pt wire and Ag/AgCl as working, counter and reference electrodes,
respectively. Thermogravimetric analysis (TGA) and differential scanning calorimetry

(DSC) were investigated by TA instruments TGA Q500 and Perkin Elmer Pyris I,
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respectively, under a nitrogen atmosphere with a heating rate of 10 °C/min.

Fluorescence spectra were measured using SHIMADZU RF-5301PC.

Synthesis of compound 2

'"H NMR (600 MHz, Chloroform-d) & 8.32 (s, 1H, ArH), 8.27 (d, /= 7.8 Hz, 1H, ArH),
8.08 (d, J=1.6 Hz, 1H, ArH), 8.02 (d, /= 7.2 Hz, 1H, ArH), 7.76 (d, /= 8.0 Hz, 1H,
ArH), 7.63 (dd, J = 8.4, 1.8 Hz, 1H, ArH), 3.69 (d, J = 7.8 Hz, 2H, -N-CH,-), 2.01 —
1.92 (m, 1H, -CH-), 1.45 - 1.19 (m, 8H, -CH;-), 0.94 (t, J = 7.8 Hz, 3H, -CH3), 0.91 (t,
J=17.2 Hz, 3H, -CH,).

Synthesis of F16

Compound 2 (200 mg, 0.42 mmol), hexamethylditin (67 mg, 0.21 mmol), Pd(PPh;),
(24 mg, 0.02 mmol), and 15 mL dry toluene were added to a round bottom flask under
nitrogen atmosphere. The reaction was heated to 115 °C for 2 h. The reaction was
cooled to room temperature and the solvent was removed under a reduced pressure. The
crude product was purified through column chromatography (SiO,, PE/DCM, 2/1, V/V)
to afford F16 (70 mg, 41.9%) 'H NMR (600 MHz, Chloroform-d) & 8.34 (s, 2H, ArH),
8.25 (d, J= 7.2 Hz, 2H, ArH), 8.08 (s, 2H, ArH), 8.01 (d, J= 7.2 Hz, 2H, ArH), 7.85
(d, J=17.2 Hz, 2H, ArH), 7.63 (d, J = 7.2 Hz, 2H, ArH), 3.70 (d, J = 7.8 Hz, 4H, N-
CH,-), 1.99 (m, 2H, -CH-), 1.48 — 1.27 (m, 16H, -CH,-), 0.96 (t,J= 7.2 Hz, 6H, -CH3),
0.91 (t,J= 6.6 Hz, 6H, -CH3). 3C NMR (151 MHz, CDCls) & 168.34, 167.29, 146.53,
145.07, 142.57, 141.03, 138.25, 137.59, 137.33, 136.93, 135.48, 129.96, 126.60,
123.35, 122.13, 121.21, 118.62, 114.24, 108.03, 42.43, 38.16, 30.50, 28.49, 23.84,
23.08, 14.09, 10.43.

Synthesis of compound 4

"H NMR (600 MHz, Chloroform-d) 6 9.00 (d, /= 0.6 Hz, 1H, ArH), 8.31 (s, 1H, ArH),
8.08 (d, /= 1.2 Hz, 1H, ArH), 8.04 (d, /= 1.2 Hz, 1H, ArH), 7.82 (d, /= 8.4 Hz, 1H,
ArH), 7.65 (dd, J= 7.8, 1.8 Hz, 1H, ArH), 3.67 (d, J = 7.2 Hz, 2H, -N-CH;-), 1.90 —
1.86 (m, 1H, -CH-), 1.41 — 1.25 (m, 8H, -CH,-), 0.95 (t, /= 7.8 Hz, 3H, -CH3), 0.90 (t,
J=7.2Hz, 3H, -CHj).

Synthesis of F17



Compound 4 (200 mg, 0.42 mmol), hexabutylditin (67 mg, 0.21 mmol), Pd(PPh;), (24
mg, 0.021 mmol), and 15 mL dry toluene were added to a round bottom flask under
nitrogen atmosphere. The reaction was heated to 115 °C for 2 h. The reaction was
cooled to room temperature and the solvent was removed under a reduced pressure. The
crude product was purified through column chromatography (SiO,, PE/DCM, 2/1, V/V)
to afford F17 (84 mg, 49.1%) as a yellow solid."H NMR (600 MHz, Chloroform-d) &
8.93 (s, 2H, ArH), 8.28 (s, 2H, ArH), 8.09 (s, 2H, ArH), 8.01 (s, 2H, ArH), 7.90 (d, J =
7.2 Hz, 2H, ArH), 7.61 (d, J = 7.2 Hz, 2H, ArH), 3.66 (d, J = 7.2 Hz, 4H, -N-CH,-),
1.89 (m, 2H, -CH-), 1.44 — 1.27 (m, 16H, -CH,-), 0.95 (t, J = 7.2 Hz, 6H, -CH3;), 0.90
(t, J = 6.6 Hz, 6H, -CHj3). 3C NMR (151 MHz, CDCl;) 6 168.70, 168.58, 146.35,
144.37, 139.20, 137.81, 137.20, 136.54, 135.48, 130.81, 130.77, 129.62, 127.85,
123.36, 122.93, 122.33, 118.55, 115.11, 114.89, 42.11, 38.51, 30.57, 28.56, 23.90,
23.01, 14.08, 10.46.

Device Fabrication

A bottom-gate/top-contact (BG/TC) transistor device is fabricated in this study.
Highly n-doped silicon (100) wafers with a 300 nm SiO, dielectric layer (areal
capacitance = 10 nF/cm?) were used as substrates. Prior to device fabrication, the wafers
were exposed to UV/ozone for 1 hour. Subsequently, a self-assembled monolayer of n-
octadecyltrichlorosilane (ODTS) was deposited onto the dielectric layer by spin-
coating in its precursor solution (15 pL. of ODTS in 15 mL of trichloroethylene) in a
glovebox at 3000 rpm for 10 s to ensure more optimized charge transport properties.
Note that chemical reaction between ODTS and SiO; is accelerated by the presence of
NH; gas and proceeds for overnight, followed by ultrasonication with toluene for 15
minutes to remove residual chemicals. Prior to the deposition of the active layer, the
ODTS-modified wafers were partially covered with polydimethylsiloxane (PDMS) and
subjected to an 8-minute plasma treatment to form a hydrophilic boundary. Precursor
solutions of F16 and F17 were prepared with chloroform (5 mg/mL) and stirred for 4.5
hours in a glovebox. Before spin-coating, the precursor solutions were filtered using a
0.22 pum filter. Polymer films of F16 and F17 were prepared by spin-coating the
precursor solutions at 1000 rpm for 60 s in a glovebox, followed by annealing at specific
temperatures (100 °C, 150 °C, or 200 °C) for 30 minutes. Finally, top-contact gold
electrodes were deposited by thermal evaporation through a shadow mask with channel
length (L) and width (W) of 50 pm and 1000 pm, respectively. Characterization of the
performance of FETs was recorded in a glovebox using a Keithley 4200-SCS

semiconductor parameter analyzer (Keithley Instruments Inc.).



LS

et

S

_J*J

113 8.202762.85

T

1.08 0.97 1.00 1.09 1.05 1.08

0.0

05

1.0

1.5

20

25

3.0

35

45

5.0

55

6.0

6.5

5 70

5

5 80

85

9.0

40

Chemical Shift (ppm)

Fig. S1 '"H NMR spectrum of compound 2, conducted in CDCl;
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Fig. S2 'H NMR spectrum of compound 4, conducted in CDCls.
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Fig. S3 '"H NMR spectrum of compound F16, conducted in CDCl;.
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Fig. S4 3C NMR spectrum of compound F16, conducted in CDCl;.
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Fig. S5 '"H NMR spectrum of compound F17, conducted in CDCl;.
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Fig. S6 *C NMR spectrum of compound F17, conducted in CDCl;.
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Fig. S7 HR-mass spectrum of F16.
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Fig. S8 HR-mass spectrum of F17.
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Fig. S9 Calculated HOMO-LUMO and molecular geometries of F16 and F17 with different

conformations.

Table S1. Summary of calculated data for the different conformations of F16 and F17 shown
in Fig. S9.

Total Energy  Dipole Moment  Dihedral Angles HOMO LUMO
Isomers (hartree) (Debye) (Degree) (eV) (eV)
F16-A -2605.819387 2.30 37.07 -3.351 -6.340
F16-B -2605.815418 6.03 37.32 -3.342 -6.334
F17-A -2605.832093 3.29 37.50 -3.363 -6.385

F17-B -2605.833792 8.07 37.64 -3.368 -6.386
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Fig. S10 Electrochemical stability of F16 and F17 under ten cycles of CV tests.

Fig. S11 OM images of (a) F16 and (b) F17 films annealed at 100 °C. The scale bar is
25 pm.
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Fig. S12 FET transfer characteristics of F17 device using Ag as electrodes annealed at
(left) 100 °C and (right) 150 °C. All experiment were performed at Vpg= 80 V-



Table S2. Summary of F17 FET devices using Ag as electrodes.

. Annealed Max mobility Avg. mobility On/Off Vi
Material .
(°C) (em? V-gl)y  (cm? Vs ratio ")
F17 100 6.69 x 104 4.61x 10+ 2.84 x 108 57.94

150 6.95 x 10+ 5.14x 104 6.80 x 109 51.02




