Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

From Loose to Tight: Unveiling Bond Stretch Isomerism in π -Complexes of Li, Na and K

Pilankatta K. Ramya^{a,b}, Ayush Shivhare^c, Milind M. Deshmukh^c and Cherumuttathu H. Suresh ^{a,b,d*}

^aChemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

^cDepartment of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, India.

^dSrinivasa Ramanujan Institute for Basic Sciences, Kerala State Council for Science, Technology and Environment, Kottayam, Kerala, 686501, India.

Table of	contents	Page No.
Figure S1	MESP isosurface plots of all HASs and AHs	S2
Table S1	Interaction energy, binding distance, reaction barrier, spin density, NBO charge and MESP minima of all <i>ts-bi</i>	S2
Figure S2	MESP isosurface plots and spin density plots of phenanthrene…M (M= Li, K) complexes	S4
Figure S3	MESP isosurface plots and spin density plots of <i>lbi</i> and <i>sbi</i> complexes of phenanthreneNa	S5
Figure S4	MESP isosurface plots and spin density plots of triphenylene…Li complexes	S5
Figure S5	MESP isosurface plots and spin density plots of triphenylene…M (M= Na, K) complexes	S6
Figure S6	MESP isosurface plots and spin density plots of coronene…Li complexes	S6
Figure S7	MESP isosurface plots and spin density plots of coroneneM (M= Na, K) complexes	S7
Figure S8	Relative energy level diagram plotted against nearest C···M distances for $lbi \leftrightarrow sbi$ of triphenylene···M complexes <i>via</i> corresponding <i>ts-bi</i>	S7
Table S2	NPA, Mulliken and Hirshfeld charges of all <i>sbi</i> and <i>lbi</i> NAH/HAS/AH complexes	S8
Table S3	NPA, Mulliken and Hirshfeld charges of all <i>sbi</i> and <i>lbi</i> complexes of AHs with multiple rings	S9

Supporting Information

Table S4	SAPTO analysis of all complexes	S10
Table S5	BSSE energy of all complexes	S11

Figure S1. MESP isosurface plots of all HASs and AHs at -13.8 kcal/mol. The black dots represent V_{min} positions.

Table S1. Interaction energy (E_{ts} , kcal/mol), binding distance (d_{ts} , Å), reaction barrier (kcal/mol), spin density (δ_{M-ts}), Mulliken charge (q_{M-ts}) and MESP minima (V_{min} , kcal/mol).

ts-bi	М	E _{ts}	d _{ts}	Activati	on barrier	δ_{M-ts}	q _{M-ts}	V _{min} (Rich centers)
				Forward	Backward			
(1 …Li) _{ts}	Li	4.5	2.19	5.1	12.3	0.728	0.096	-26.2 (Li)
(3 …Li) _{ts}	Li	2.5	2.26	3.1	4.1	0.718	0.075	-25.8 (Li)
(4 ⋯K) _{ts}	К	-1.2	3.11	0.2	2.4	0.815	0.105	-15.3 (4)
(5 …Li) _{ts}	Li	-0.6	2.34	1.6	8.8	0.799	0.017	-23.1 (Li)
(7 …Li) _{ts}	Li	2.0	2.55	2.3	10.6	0.807	0.009	-22.1 (Li)
								-52.8 (N of 7)
(9 …Li) _{ts}	Li	-0.8	2.36	3.2	2.5	0.595	0.128	-13.4 (Li)
(10 …Li) _{ts}	Li	-3.2	2.66	0.1	10.8	0.941	-0.056	-32.9 (Li)

(10 …Na) _{ts}	Na	1.1	2.75	4.7	2.4	0.510	0.355	-23.4 (10)
(10 ⋯K) _{ts}	К	-1.6	3.17	1.7	5.4	0.707	0.223	-16.8 (10)
(11 _{R1} …Li) _{ts}	Li	-3.3	2.60	0.2	8.3	0.893	-0.020	-30.6 (Li)
(11 _{R1-R2} …Li) _{ts}	Li	-5.0	2.06	6.6	6.4	0.015	0.644	-31.3 (11)
(11 _{R2} …Li) _{ts}	Li	-2.6	2.59	8.8	-0.2	0.916	-0.011	-32.7 (Li)
(11 _{R1} ····K) _{ts}	К	-1.3	3.09	2.1	3.9	0.634	0.294	-19.1 (11)
(11 _{R1-R2} ····K) _{ts}	К	-2.8	2.70	2.5	4.9	0.077	0.793	-37.5 (11)
(12 _{R1} …Li) _{ts}	Li	-1.9	2.48	1.6	8.8	0.757	0.083	-23.3 (Li)
(12 _{R1} ····K) _{ts}	К	-3.7	2.88	-0.6	2.5	0.044	0.808	-39.3 (12)
(13 _{R1-R2} …Li) _{ts}	Li	-3.3	2.12	8.3	-1.2	0.037	0.734	-26.0 (13)

Figure S2. (a), (b), (c), (d), (i), (j), (k) and (l) represent MESP isosurface plots at -13.8 kcal/mol, and (e), (f), (g), (h), (m), (n), (o) and (p) represent spin density plots at 1.9 kcal/mol of phenanthrene…M complexes (M = Li, K).

Figure S3. (a) and (b) represent MESP isosurface plots at -13.8 kcal/mol, (c) and (d) represent spin density plots at 1.9 kcal/mol of phenanthrene...Na complexes.

Figure S4. (a), (b), (c) and (d) represent MESP an isosurface plots at -21.3 kcal/mol, and (e), (f), (g), and (h) represent spin density plots at 1.9 kcal/mol of triphenylene…Li complexes.

Figure S5. (a), (b), (c), (d), and (e) represent MESP isosurface plots at -21.3 kcal/mol, and (f), (g), (h), (i), and (j) represent spin density plots at 1.3 kcal/mol of triphenylene…M complexes (M = Na, K).

Figure S6. (a), (b), (c) and (d) represent MESP isosurface plots at -18.8 kcal/mol, and (e), (f), (g), and (h) represent spin density plots of BSIs at 1.9 kcal/mol of coronene…Li complexes.

Figure S7. (a), (b), (c), (d), and (e) represent MESP isosurface plots at -18.8 kcal/mol, and (f), (g), (h), (i), and (j) represent spin density plots at 1.3 kcal/mol of coronene···M complexes (M=Na, K).

Figure S8. Relative energy (E_{rel}) level diagram plotted against nearest C···M distances (d) for *lbi* \leftrightarrow *sbi* of triphenylene···M (M = Li/K) complexes *via* corresponding *ts-bi*.

= ovetome	N 4	NPA	NPA	Mulliken	Mulliken	Hirshfeld	Hirshfeld
n-systems		(S)	(L)	(S)	(L)	(S)	(L)
Acotylopo	Li	0.782	-0.014	0.423	-0.076	0.427	-0.110
(1)	Na	-	-0.008	-	-0.041	-	-0.048
(1)	К	-	-0.007	-	-0.035	-	-0.051
Diacetylene	Li	0.816	-	0.499	-	0.421	-
(2)	Na	0.844	-0.004	0.636	-0.028	0.532	-0.046
(2)	К	0.884	-	0.746	-	0.552	-
Fthylene	Li	0.751	-0.019	0.362	-0.092	0.413	-0.103
(3)	Na	-	-0.012	-	-0.053	-	-0.044
(3)	К	-	-0.010	-	-0.045	-	-0.047
Butadiana	Li	0.808	-	0.427	-	0.424	-
(4)	Na	-	-0.008	-	-0.062	-	-0.066
()	К	0.830	0.022	0.661	-0.028	0.516	-0.058
Thionhene	Li	0.776	-0.041	0.459	-0.114	0.374	-0.176
(5)	Na	-	-0.015	-	-0.058	-	-0.088
(3)	К	-	-0.015	-	-0.045	-	-0.100
Pyrrole	Li	-	-0.036	-	-0.140	-	-0.199
(6)	Na	-	-0.013	-	-0.079	-	-0.112
(0)	К	-	-0.013	-	-0.063	-	-0.121
Pyridine	Li	0.848	-0.008	0.465	-0.097	0.426	-0.137
(7)	Na	-	-	-	-	-	-
	К	0.932	-	0.770	-	0.562	-
Furan	Li	-	-0.019	-	-0.095	-	-0.153
(8)	Na	-	-0.007	-	-0.054	-	-0.076
(0)	К	-	-0.007	-	-0.042	-	-0.087
Benzene	Li	0.804	-0.032	0.456	-0.130	0.374	-0.188
(9)	Na	-	-0.070	-	-0.070	-	-0.096

Table S2. Natural population analysis, Mulliken charge and Hirshfeld charges of all *sbi* and *lbi*complexes.

	К	-	-0.012	-	-0.057	-	-0.109
Nanhthalene	Li	0.858	0.918	0.519	-0.014	0.416	0.574
(10)	Na	0.904	0.960	0.708	-0.055	0.553	0.722
()	К	0.953	0.969	0.827	-0.046	0.568	0.724

Table S3. Natural population analysis, Mulliken charge and Hirshfeld charges of all *sbi* and *lbi* complexes of AHs with multiple rings.

	Ring	М	NPA	NPA	Mulliken	Mulliken	Hirshfeld	Hirshfeld
АПЗ			(S)	(L)	(S)	(L)	(S)	(L)
		Li	0.851	0.911	0.527	-0.097	0.411	-0.177
	R1	Na	-	-0.008	-	-0.050	-	-0.092
Phenanthrene		К	0.952	-0.011	0.840	-0.041	0.574	-0.121
(11)	R2	Li	0.902	0.939	0.585	-0.077	0.438	0.602
		Na	-	0.972	-	-0.042	-	0.738
		К	0.961	0.977	0.853	-0.035	0.567	0.726
	R1	Li	0.846	0.903	0.536	-0.086	0.406	-0.171
		Na	-	-0.007	-	-0.045	-	-0.089
Triphenylene		К	0.935	-0.010	0.828	-0.036	0.543	-0.121
(12)	R2	Li	0.905	-0.012	0.647	-0.053	0.436	-0.151
		Na	-	-0.007	-	-0.032	-	-0.079
		К	-	-0.009	-	-0.027	-	-0.126
	R1	Li	0.908	0.950	0.615	-0.065	0.447	0.610
		Na	-	0.979	-	-0.031	-	0.749
Coronene		К	0.966	0.982	0.886	-0.024	0.584	0.734
(13)	R2	Li	0.941	0.970	0.693	-0.031	0.469	0.662
		Na	-	0.984	-	-0.016	-	0.768
		К	0.973	-	0.915	-	0.592	-

BSIs	E _{elst}	E _{exch}	E _{ind}	E _{disp}	E _{SAPTO}
(1 …Li) _L	-19.9	29.1	-8.3	-4.4	-3.5
(1 …Li) _s	-61.0	102.1	-75.2	-14.5	-48.6
(1 …Na) _∟	-8.9	13.1	-2.8	-2.3	-0.8
(1 …K) _L	-9.6	13.4	-2.9	-2.4	-1.5
(2 …Li) _S	-72.4	110.7	-78.2	-17.9	-57.8
(2 …Na) _L	-10.8	15.7	-3.0	-3.2	-1.3
(2 …Na) _s	-50.7	75.5	-46.4	-12.3	-33.9
(2 …K) _S	-46.0	69.6	-50.8	-12.7	-40.0
(3 …Li)∟	-20.8	30.9	-9.1	-4.9	-3.9
(3 …Li) _s	-66.0	105.9	-41.6	-13.9	-15.6
(3 …Na) _L	-9.3	14.0	-3.1	-2.5	-1.0
(3 …K)∟	-10.5	14.8	-3.3	-2.8	-1.7
(4 …Li) _s	-77.6	123.8	-54.3	-19.6	-27.6
(4 …Na)∟	-16.1	23.3	-5.2	-4.8	-2.7
(4 …K)∟	-22.3	30.8	-7.2	-6.4	-5.0
(4 …K) _S	-51.1	77.7	-20.4	-13.7	-7.5
(5 …Li) _∟	-44.5	60.3	-14.9	-10.9	-10.0
(5 …Li) _s	-103.0	150.3	-59.4	-25.1	-37.3
(5 …Na)∟	-23.5	31.2	-5.9	-6.3	-4.5
(5 …K)∟	-26.0	33.1	-6.3	-6.9	-6.2
(6 …Li)∟	-54.2	70.4	-20.4	-12.5	-16.7
(6 …Na)∟	-29.9	37.9	-8.8	-7.3	-8.1
(6 …K)∟	-32.7	40.1	-9.2	-8.3	-10.0
(7 …Li)∟	-36.9	52.6	-12.4	-10.3	-7.0
(7 …Li) _s	-103.3	157.9	-61.3	-26.9	-33.6
(7 …K) _S	-63.4	95.8	-26.7	-17.7	-12.0
(8 …Li)∟	-38.5	53.1	-13.5	-9.3	-8.2
(8 …Na) _L	-20.9	28.3	-5.6	-5.5	-3.6
(8 …K)∟	-23.4	30.6	-6.3	-6.2	-5.3
(9 …Li)∟	-48.0	65.3	-17.6	-12.9	-13.2
(9 …Li) _s	-105.0	154.5	-48.6	-28.1	-27.2
(9 …Na)∟	-25.2	33.4	-7.0	-7.3	-6.1
(9 …К)∟	-28.1	35.6	-7.6	-8.1	-8.2
(10 …Li) _L	-48.4	66.7	-17.4	-14.2	-13.4
(10 …Li) _S	-104.9	155.4	-52.9	-29.3	-31.7
(10 …Na) _L	-26.7	35.8	-7.2	-8.6	-6.7
(10 …Na) _S	-70.3	101.4	-16.7	-19.1	-4.7
(10 …K)∟	-32.5	41.7	-8.7	-10.4	-9.8
(10 …К) _S	-68.9	98.2	-17.8	-20.9	-9.3
(11 _{R1} …Li) _L	-50.4	69.2	-18.1	-14.9	-14.3
(11 _{R1} …Li) _S	-105.3	154.9	-50.1	-29.8	-30.3

Table S4. The electrostatics (E_{elst}), exchange (E_{exch}), induction (E_{ind}), dispersion (E_{disp}) and total SAPTO interaction energies (E_{SAPTO}) at HF/6-311G (d,p) level of theory. All values in kcal/mol.

(11 _{R2} …Li) _L	-45.6	63.7	-15.8	-14.5	-12.2
(11 _{R2} …Li) _S	-106.2	159.5	-56.7	-31.6	-35.1
(11 _{R1} …Na) _L	-27.7	37.1	-7.4	-9.1	-7.1
(11 _{R2} …Na) _L	-27.1	36.8	-7.0	-9.5	-6.8
(11 _{R1} ····K) _L	-33.4	42.8	-8.8	-11.0	-10.4
(11 _{R1} ····K) _S	-70.9	100.1	-24.7	-22.4	-17.7
(11 _{R2} ····K) _L	-34.8	44.9	-9.1	-11.9	-10.9
(11 _{R2} …K) _S	-72.6	103.5	-25.7	-23.4	-18.2
(12 _{R1} …Li) _L	-51.7	70.9	-18.4	-15.5	-14.8
(12 _{R1} …Li) _S	-105.4	154.4	-50.6	-30.1	-31.7
(12 _{R2} …Li) _L	-43.8	62.1	-14.4	-15.1	-11.3
(12 _{R2} …Li) _S	-104.0	157.8	-50.3	-32.9	-29.4
(12 _{R1} …Na) _L	-27.7	36.9	-7.3	-9.3	-7.3
(12 _{R2} …Na) _L	-26.6	36.4	-6.6	-9.9	-6.8
(12 _{R1} …K) _L	-33.9	43.5	-8.9	-11.5	-10.7
(12 _{R1} ····K) _S	-76.2	108.1	-27.8	-25.3	-21.3
(12 _{R2} …K) _L	-35.9	46.4	-9.2	-12.8	-11.4
(13 _{R1} …Li) _L	-47.9	66.5	-16.3	-15.7	-13.4
(13 _{R1} …Li) _S	-107.5	159.4	-52.7	-32.7	-33.6
(13 _{R2} …Li) _L	-40.8	57.3	-12.2	-15.1	-10.8
(13 _{R2} …Li) _S	-106.2	159.2	-45.4	-34.8	-27.2
(13 _{R1} …Na) _L	-27.9	37.7	-6.9	-10.3	-7.4
(13 _{R2} …Na) _L	-26.7	36.2	-6.1	-10.7	-7.2
(13 _{R1} ····K) _L	-35.9	46.2	-8.9	-13.0	-11.7
(13 _{R1} ····K) _S	-72.6	101.8	-23.2	-24.6	-18.7
(13 _{R2} …K) _S	-74.2	103.1	-20.6	-26.3	-18.1

Table S5. The energy corresponds to basis set super position error (E_{BSSE} , kcal/mol) of all complexes at $\omega B97XD/6-311G$ (d,p) level of theory.

BSIs	E _{BSSE}	BSIs	E _{BSSE}	BSIs	E _{BSSE}
(1 …Li) _L	0.44	(7 …Li)∟	0.86	(11 _{R1} ····K) _L	0.50
(1 …Li) _S	0.82	(7 …Li) _s	1.53	(11 _{R1} ····K) _S	0.87
(1 …Na)∟	0.40	(7 …K) _s	1.14	(11 _{R2} ····K) _L	0.51
(1 …K)∟	0.33	(8 …Li)∟	1.36	(11 _{R2} …K) _S	0.87
(2 …Li) _s	0.61	(8 …Na)∟	0.81	(12 _{R1} …Li) _L	0.81
(2 …Na)∟	0.36	(8 …K)∟	0.60	(12 _{R1} …Li) _S	1.05
(2 …Na) _s	0.60	(9 …Li)∟	0.77	(12 _{R2} …Li) _L	0.89
(2 …K) _S	0.50	(9 …Li) _s	1.10	(12 _{R2} …Li) _S	1.20
(3 …Li)∟	0.42	(9 …Na)∟	0.71	(12 _{R1} Na) _L	0.77
(3 …Li) _s	0.70	(9 …K)∟	0.49	(12 _{R2} ····Na) _L	0.79

(3 …Na) _∟	0.43	(10 …Li) _∟	0.74	(12 _{R1} ····K) _L	0.54
(3 …K)∟	0.38	(10 …Li) _s	1.01	(12 _{R1} ····K) _S	0.99
(4 …Li) _s	0.78	(10 …Na)∟	0.71	(12 _{R2} ····K) _L	0.58
(4 …Na) _∟	0.56	(10 …Na) _s	1.13	(13 _{R1} …Li) _L	0.79
(4 …K)∟	0.46	(10 …K)∟	0.47	(13 _{R1} …Li) _S	1.09
(4 ⋯K) _S	0.74	(10 ⋯K) _S	0.82	(13 _{R2} …Li) _L	0.85
(5 …Li) _∟	1.13	(11 _{R1} …Li) _L	0.78	(13 _{R2} …Li) _S	1.21
(5 …Li) _s	1.66	(11 _{R1} …Li) _S	1.05	(13 _{R1} …Na) _L	0.76
(5 …Na) _∟	0.96	(11 _{R2} …Li) _L	0.76	(13 _{R2} …Na) _L	0.78
(5 …K)∟	0.73	(11 _{R2} …Li) _S	1.05	(13 _{R1} ····K) _L	0.55
(6 …Li) _L	1.03	(11 _{R1} Na) _L	0.74	(13 _{R1} ····K) _S	0.90
(6 …Na) _L	0.92	(11 _{R2} ····Na) _L	0.75	(13 _{R2} ····K) _S	0.92
(6 …K)∟	0.72				