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I. Basin-hopping structural search and geometry operators

A basin-hopping searching process contains multiple steps to manipulate the cluster 
structure. We designed four geometry operators for this purpose (Fig. S2):

a. Drag and release operator: 
For a randomly selected molecule, a distant point along any direction from the 
molecule's center of mass (COM) is chosen as a release point. The molecule is 
then pulled back from that point along the opposite direction and released towards 
the optimal position within the original molecular system, bringing the moving 
molecule closer to other molecules. To prevent atoms from getting too close, the 
distance between atoms of different molecules must be greater than 1.2 times the 
sum of their Van der Waals radii.

b. Random move operator: 
Each molecule undergoes random translations and rotations, with movements less 
than 2 angstroms and rotations less than 60 degrees.

c. Shuffle operator: 
We adopted an algorithm previously used for random search.1 Molecules are 
randomly distributed and rotated within an 8x8x8 (in angstrom) cell. The distance 
between each pair of molecules must be larger than 5 and smaller than 9 
angstroms simultaneously.

d. Bond rotation operator: 
Specifically designed for ethanol and trifluoroethanol, this operator randomly 
rotates all the C-C and C-O bonds within a given rotation range.

We can adjust the probabilities of selecting these four operators at each step. For 
example, we found the Drag-and-Release operator to be highly effective in finding 
new H-bonded structures. Therefore, we set its probability to 50%. The probabilities 
for Random Move and Shuffle are each set to 10%. We also employed three types of 
Bond rotation operators, with rotation angles ranging from [-30, 30], [-60, 60], and [-
120, 120] degrees, simulating small to large-scale bond rotations. Each bond rotation 
operator has a probability of 10% of being executed.

In each basin-hopping step, one of these operators is chosen based on the 
abovementioned probabilities to find the new cluster structure. The newly found 



structure will undergo geometry optimization. The acceptance of the optimized 
structure is checked based on two criteria: 

1.  It is rejected if the structure is unreasonable, such as having a broken covalent 
bond. 

2. Given a random number between 0 and 1, if it is smaller than e-(Enew-Eold)/kT, the 
structure is accepted and replaces the old one. 

Since we are not searching only for the global minimum, all the accepted 
structures are retained in a database.



II. Training samples for NNP models

Our NNP training is divided into an initial model (NNP0) and patched model (NNP1, 
NNP2, etc.) trainings. The corresponding training samples are listed in Table S1 and 
described below:

1. Replacement samples:
We started with the H+T5 structures with Ar from Ref. 1, selecting 14 linear and 24 
cyclic structures, which are structures with probabilities greater than 0.1 in Q-HSA 
calculations below 200K. We replaced the CF3 group with a CH3 group, considering 
all possible substitutions to generate H+TmEn-Ar clusters. These structures were 
optimized, and frequency calculations were conducted using M06-2X/6-311+G(d, p) 
(with or without GD3 correction) (Fig. S3). In the preliminary analysis of the stability 
of linear and cyclic H-bonded species, we found that the dispersion effect greatly 
influenced ethanol-rich (n > 2) clusters, changing the representative H-bonded 
structures. Conversely, the correction had less impact on TFE-rich clusters (n < 3). 
Moreover, our previous study shows that for the H+E4 cluster, the dispersion 
correction cannot be ignored.2 While M06-2X already includes mid-range electronic 
correction, the dispersion correction supplements long-range interactions. We 
employed Grimme's GD3 correction with a damped R-6 term correction (SR6 = 1.619),  
included in the Gaussian 16 software.3 We will refer to the corrected level of theory as 
M06-2X+D3 in the following paragraphs.

2. PM6 samples:
Since direct structural search using DFT is time and resource-consuming, we 
previously used DFTB3 or random search to obtain structural samples, which were 
then optimized with DFT. We conducted basin-hopping structural searches using the 
PM6 method instead of DFTB3 to complement replacement samples because the 
DFTB3 library (3ob-3-1) we used did not provide parameters for Ar.4-7 After 
obtaining the search samples, we re-optimized them using M06-2X(+D3). We found a 
poor correlation between PM6 and M06-2X, with mean absolute errors (MAE) of 
energies exceeding 50 kJ/mol (Fig. S4 and S5). Since the PM6 samples are not 
entirely unreasonable (e.g., large intermolecular distances), they can provide suitable 
initial samples and offer sufficient force and energy training data during the M06-2X 
optimization process. While methods such as PM7 or DFTB3 may provide results 
closer to DFT, we aimed to exclude the impact of a particular semi-empirical potential 
on the NNP training. With a preliminary usable NNP model, we replaced semi-



empirical methods with NNP for structural searches and iteratively refined this model. 
For simplicity, we use the label PM6 to indicate the DFT-optimized structures of 
PM6 and replacement samples.

3. NNP0 samples:
We combined the GD3-corrected minima from II.1 and II.2 and used an exponential 
function to extract optimization snapshots (20 for each minimum, see Fig. S6). These 
snapshots provide forces and energies as the training set 0 for the NNP0 model 
training. Basin-hopping structural searches were performed using NNP0 to obtain the 
distinct minima as test set 0 (Fig. S7(a)). The mean absolute error was evaluated by 
comparing NNP energies with their M06-2X+D3 single-point energies. The patch set 
0 was extracted from the test set 0 in which the errors of the data points exceeded 3 
kJ/mol.

4. Iterative patching samples from the NNP structure searches:
Patch set 0 was added to training set 0 to build training set 1. Using NNP0 as a basis 
and the training set 1, the NNP1 model was generated (Fig. S7(b)), and basin-hopping 
structural searches were conducted with the NNP1 model to establish test set 1. Again, 
test set 1 was evaluated using M06-2X+D3 single-point calculations to assess the 
MAE of energies. Those with errors larger than 3 kJ/mol will be retained as the new 
patching data (Fig. S7(c)). We utilized the same iterative procedure to generate the 
new models (e.g., NNP2 and NNP3).

III. Communications among Gaussian 16, Schnetpack, and basin-

hopping workers

To integrate Gaussian optimization tasks with Neural Network Potential (NNP) 
predictions, we developed interfaces linking Gaussian, Schnetpack, and our basin-
hopping code (Fig. S2). At each step, the basin-hopping code generates the necessary 
Gaussian input file and performs the optimization job, yielding optimized coordinates, 
forces, and energy. This approach enables the use of the PM6 semi-empirical potential, 
Density Functional Theory (DFT) level of theory, and Schnetpack models in 
conjunction with Gaussian's built-in Berny optimization algorithm.8 For geometry 
optimization using a Schnetpack NNP model, an external Python code is employed to 
predict forces and energy with given coordinates during the process. The route section 
of the Gaussian input file used for this external code is shown in Fig. S2 (i.e., 



external=”$NNP_predictor.py NNP_model” where $NNP_predictor.py refers to an 
actual Python script). Finally, the Message Passing Interface (MPI) protocol is used to 
distribute the optimization tasks of each basin-hopping worker across the 
computational resources (Fig. S1).



IV. Schnetpack NNP training scheme

We used the Schnetpack deep-learning package for training the NNP model, 
employing 4 interaction layers, 75 sets of radial functions for describing the 
interatomic distances, and 128 sets of features in the output later to describe atomic 
interactions and energies.9 As for the loss function, we include the energy (E) and the 
interatomic forces (F) as follows:

where ref and pred stand for referenced and predicted data, respectively, and the force 
difference is evaluated by the Euclidean norm. In this loss function, we use the 
coefficients ρ1 and ρ2 to determine the contributions of energy and forces. After 
several attempts, the best training result was obtained with ρ1 = 0.01 and ρ2 = 1 - ρ1, 
which can reduce the mean absolute error (MAE) of energy and forces to less than 2 
kJ/mol. In each training session, we used 32 batches to maintain a reasonable GPU 
memory usage. The training facility we used was a single Nvidia Tesla V100 GPU 
with 32GB memory (Taiwania 2 cluster) at National Center for High-performance 
Computing in Taiwan.

To ensure training convergence, we employed the Warm-restart learning rate 
scheduler. Additionally, we conducted 5 training sessions, with initial learning rates 
ranging from 0.001 to 0.0005. During the training, 10% of the training set will be 
chosen as the validation set. After each training finishes, we select the model with the 
lowest validation loss and MAE on the validation set.

The correlation between the NNP predictions and DFT single-point calculations 
and the mean absolute error of energies (EMAE) and forces (FMAE) of NNP0, NNP1, 
NNP2, and NNP3 are presented in Fig. S8 – S15. We further analyze the distribution 
of the energy errors to resolve the dense data points in the energy correlations (Fig. 
S16 – S19). The EMAE and FMAE are improved from NNP0 to NNP2. The DFT 
minima derived from the NNP2 minima almost cover the low-energy range of the 
previous DFT results (Fig. S20 – S22). Therefore, we considered the subsequence 
models converged and used the NNP3 model patched from NNP2 for the production 
run. More than 15 basin-hopping searching cycles were conducted extensively to 
search test set 3 with the NNP3 model. Due to the large size of test set 3, the EMAE 
slightly increased from test set 2. Nevertheless, the NNP3 model is sufficiently 



accurate overall, with an average EMAE of around 1.819 kJ/mol.



Table S1. Numbers of training data for H+TmEn-Ar clusters (m + n = 5). The training 
set 0 includes the snapshots obtained from the geometry optimization at M06-
2X+D3/6-311+G(d,p) level from the PM6 samples. The patch sets were obtained 
from the single-point calculations at the same DFT level. The training set was 
expanded with the patch set to generate the new NNP model. For example, the 
training set 3 for NNP3 model includes training set 0, patch set 1, patch set 2, and 
patch set 3.



Figure S1. The workflow of the parallelized basin-hopping algorithm with N CPU 
workers. Each worker selects an initial structure from a structure database and has its 
T parameter for the transition probability of the newly searched local minimum in this 
work. When a series of basin-hopping steps finishes (100 steps), all accepted local 
minima are collected, duplicates are removed, and the structure database is updated. 
The next cycle will randomly select initial structures from the updated structure 
database based on Boltzmann weight for a new basin-hopping search. In this work, 
this process is repeated for at least two cycles or more. The T parameters are evenly 
chosen from 200 to 2000 for 24 CPU workers.



Figure S2. The workflow of the basin-hopping worker. One of four geometric 
operators is applied to the current configuration, with the choice of operator 
determined by its selection probability. The resulting configuration is then optimized 
using a potential model, either the Neural Network Potential (NNP) or the semi-
empirical PM6 method, implemented through the Berny algorithm in Gaussian 2016 
(G16) software.8 A random number, uniformly distributed between 0 and 1, is 
generated to assess the transition probability. If this number is lower than the pre-
defined transition probability, the new configuration is accepted and replaces the 
previous one. If not, the new configuration is discarded, and the original configuration 
is retained for subsequent iterations.



Figure S3. The training set 0 for the NNP0 model. We used the H+T5 samples from 
ref. 1 to create structures for H+TmEn-Ar (m + n = 5) by replacing CF3 with CH3 
groups and considering all possible combinations for m trifluoroethanol and n ethanol 
molecules. Additionally, we performed basin-hopping structure searches with the 
PM6 method. Finally, we combined data from both approaches and optimized them 
using M06-2X+D3/6-311+G(d,p). The optimization snapshots were extracted to 
obtain training set 0.



Figure S4. Energy correlation between PM6 samples and their single-point 
calculations at M06-2X/6-311+G(d,p) level for (a) H+E5-Ar, (b) H+T1E4-Ar, (c) 
H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar.



Figure S5. Energy correlation between PM6 samples and their single-point 
calculations at M06-2X+D3/6-311+G(d,p) level for (a) H+E5-Ar, (b) H+T1E4-Ar, (c) 
H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar.



Figure S6. The selection scheme for the optimization snapshots. We uniformly 
sample 20 points between e-4 and e1 as the ratio of sampling intervals (a). These ratios 
are then applied to the optimization trajectory to obtain the sampled data points (b - d). 
In the early stages of optimization, where energy decreases rapidly, there are more 
sampled points (smaller intervals). As optimization progresses and energy changes 
slow down towards the end, the number of sampled points decreases (larger intervals).



Figure S7. The patching scheme for the NNP model. (a) Starting from an existing 
NNP model (e.g., NNP0), we performed basin-hopping structure searches to obtain a 
structure database of distinct minima. Then, we applied M06-2X+D3 single-point 
calculations to the database to form test set 0 and analyzed the mean absolute error in 
energy and forces. Data points with errors greater than 3 kJ/mol were classified as 
patch set 0. Additionally, we re-optimized low-energy structures using M06-2X+D3 
and performed frequency calculations for Q-HSA and IR spectra analysis (Q-HSA 0). 
(b) Finally, patch set 0 is added to the training set 0 to update NNP0 to the NNP1 
model. (c) The new NNP1 model can be used to generate test set 1 and patch set 1 
and to reassess the IR spectra (Q-HSA 1). Same procedure to generate NNP2, NNP3, 
and so on.



Figure S8. The energy correlation and mean absolute error (MAE) between test set 0, 
derived from NNP0 minima, and single-point calculations conducted at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. The global minimum obtained from the M06-
2X+D3 calculations serves as the reference zero energy. Data points with deviations 
greater than 3 kJ/mol (outliers) are highlighted in red. The sizes of the test sets and the 
corresponding number of outliers are provided in the accompanying legend.



Figure S9. The energy correlation and mean absolute error (MAE) between test set 1, 
derived from NNP1 minima, and single-point calculations conducted at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. The global minimum obtained from the M06-
2X+D3 calculations serves as the reference zero energy. Data points with deviations 
greater than 3 kJ/mol (outliers) are highlighted in red. The sizes of the test sets and the 
corresponding number of outliers are provided in the accompanying legend.



Figure S10. The energy correlation and mean absolute error (MAE) between test set 2, 
derived from NNP2 minima, and single-point calculations conducted at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. The global minimum obtained from the M06-
2X+D3 calculations serves as the reference zero energy. Data points with deviations 
greater than 3 kJ/mol (outliers) are highlighted in red. The sizes of the test sets and the 
corresponding number of outliers are provided in the accompanying legend.



Figure S11. The energy correlation and mean absolute error (MAE) between test set 3, 
derived from NNP3 minima, and single-point calculations conducted at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. The global minimum obtained from the M06-
2X+D3 calculations serves as the reference zero energy. Data points with deviations 
greater than 3 kJ/mol (outliers) are highlighted in red. The sizes of the test sets and the 
corresponding number of outliers are provided in the accompanying legend.



Figure S12. The force correlation and mean absolute error (MAE) between test set 0, 
derived from NNP0 minima, and single-point calculations performed at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data points with deviations exceeding 3 
kJ/mol·Å (outliers) are marked in blue. The test set sizes and corresponding number 
of outliers are detailed in the accompanying legend.



Figure S13. The force correlation and mean absolute error (MAE) between test set 1, 
derived from NNP1 minima, and single-point calculations performed at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data points with deviations exceeding 3 
kJ/mol·Å (outliers) are marked in blue. The test set sizes and corresponding number 
of outliers are detailed in the accompanying legend.



Figure S14. The force correlation and mean absolute error (MAE) between test set 2, 
derived from NNP2 minima, and single-point calculations performed at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data points with deviations exceeding 3 
kJ/mol·Å (outliers) are marked in blue. The test set sizes and corresponding number 
of outliers are detailed in the accompanying legend.



Figure S15. The force correlation and mean absolute error (MAE) between test set 3, 
derived from NNP3 minima, and single-point calculations performed at the M06-
2X+D3 level for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-
Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data points with deviations exceeding 3 
kJ/mol·Å (outliers) are marked in blue. The test set sizes and corresponding number 
of outliers are detailed in the accompanying legend.



Figure S16. The histogram of energy errors for test set 0 of the systems (a) H+E5-Ar, 
(b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data 
points exhibiting errors exceeding 3 kJ/mol are highlighted in pink. The mean 
absolute error (MAE) for data points with errors below 10 kJ/mol is provided in the 
accompanying legend.



Figure S17. The histogram of energy errors for test set 1 of the systems (a) H+E5-Ar, 
(b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data 
points exhibiting errors exceeding 3 kJ/mol are highlighted in pink. The mean 
absolute error (MAE) for data points with errors below 10 kJ/mol is provided in the 
accompanying legend.



Figure S18. The histogram of energy errors for test set 2 of the systems (a) H+E5-Ar, 
(b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data 
points exhibiting errors exceeding 3 kJ/mol are highlighted in pink. The mean 
absolute error (MAE) for data points with errors below 10 kJ/mol is provided in the 
accompanying legend.



Figure S19. The histogram of energy errors for test set 3 of the systems (a) H+E5-Ar, 
(b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. Data 
points exhibiting errors exceeding 3 kJ/mol are highlighted in pink. The mean 
absolute error (MAE) for data points with errors below 10 kJ/mol is provided in the 
accompanying legend.



Figure S20. The histogram of zero-point corrected energies for NNP0 and PM6 
samples. We compared the locally optimized energies at the M06-2X+D3 level from 
NNP0 (test set 0) and PM6 (including the replacement) samples for the systems (a) 
H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-
Ar. The number of samples is listed in legend. The intersection between two data sets 
(i.e., similarity ≥ 0.99) was removed (no intersection in NNP0 vs. PM6). Although 
we tested only a few NNP0 minima, it presents a more robust minimum search as 
more low-energy and new global minimum structures were found.



Figure S21. The histogram of zero-point corrected energies for NNP1 and 
PM6+NNP0 samples. We compared the locally optimized energies at the M06-
2X+D3 level from NNP1 (test set 1) and PM6+NNP0 samples for the systems (a) 
H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-
Ar. The number of samples is listed in legend. The intersection between two data sets 
(i.e., similarity ≥ 0.99) was isolated in blue. More low-energy isomers were presented 
in NNP1 samples. New global minima were found in H+E5-Ar and H+T3E2-Ar.



Figure S22. The histogram of zero-point corrected energies for NNP2 and 
PM6+NNP0+NNP1 samples. We compared the locally optimized energies at the 
M06-2X+D3 level from NNP2 (test set 2) and PM6+NNP0+NNP1 samples for the 
systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, 
and (f) H+T5-Ar. The number of samples is listed in legend. The intersection between 
two data sets (i.e., similarity ≥ 0.99) was isolated in blue. More low-energy isomers 
were presented in NNP2 samples. New global minima were found in H+T1E4-Ar.



Figure S23. The histogram of zero-point corrected energies for NNP3 and 
PM6+NNP0+NNP1+NNP2 samples. We compared the locally optimized energies at 
the M06-2X+D3 level from NNP3 (test set 3) and PM6+NNP0+NNP1+NNP2 
samples for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, 
(e) H+T4E1-Ar, and (f) H+T5-Ar. The number of samples is listed in legend. The 
intersection between two data sets (i.e., similarity ≥ 0.99) was isolated in blue. More 
low-energy isomers were presented in NNP3 samples. New global minima were 
found in H+E5-Ar and H+T2E3-Ar.



Figure S24. Comparison between the experimental and simulated IR spectra from the 
PM6 and replacement samples. The simulated ones were evaluated at M06-2X+D3 
level and 50K for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) 
H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. When only a C-type or L-type structure 
is present, the grey curve, which represents the combined simulated spectrum of both 
types, will be completely covered by the corresponding colored curve for that 
structure.



Figure S25. Comparison between the experimental and simulated IR spectra from 
NNP0, PM6, and replacement samples. The simulated ones were evaluated at M06-
2X+D3 level and 50K for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) 
H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. When only a C-type or L-type structure 
is present, the grey curve, which represents the combined simulated spectrum of both 
types, will be completely covered by the corresponding colored curve for that 
structure.



Figure S26. Comparison between the experimental and simulated IR spectra from 
NNP0, NNP1, PM6, and replacement samples. The simulated ones were evaluated at 
M06-2X+D3 level and 50K for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-
Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. When only a C-type or L-type 
structure is present, the grey curve, which represents the combined simulated 
spectrum of both types, will be completely covered by the corresponding colored 
curve for that structure.



Figure S27. Comparison between the experimental and simulated IR spectra from 
NNP0, NNP1, NNP2, PM6, and replacement samples. The simulated ones were 
evaluated at M06-2X+D3 level and 50K for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, 
(c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. When only a C-type 
or L-type structure is present, the grey curve, which represents the combined 
simulated spectrum of both types, will be completely covered by the corresponding 
colored curve for that structure.



Figure S28. Energy correlation and the mean absolute error (MAE) between test set 3 
from NNP3 minima and their geometry optimization at M06-2X+D3 level using the 
global minimum of latter as zero energy for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, 
(c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. The M06-2X+D3 data 
were optimized from the NNP3 minima within [0, 10] kJ/mol energy range. Data 
points with errors larger than 3 kJ/mol (outliers) are marked in red. The size of the test 
set and the number of outliers are listed in the legend.



Figure S29. Comparison of optimization steps in DFT (M06-2X+D3) for the systems 
(a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) 
H+T5-Ar. The red histogram represents the number of steps required for geometry 
optimization based on PM6 minima and methyl group substitution results. The green 
histogram shows the number of steps necessary for geometry optimization based on 
results from NNP3 minima. The sample size and average number of steps are listed in 
the legend.



Figure S30. Statistics of shape similarity between NNP3 minima and the 
corresponding DFT minima for the systems (a) H+E5-Ar, (b) H+T1E4-Ar, (c) H+T2E3-
Ar, (d) H+T3E2-Ar, (e) H+T4E1-Ar, and (f) H+T5-Ar. The latter results were optimized 
from the former at the M06-2X+D3 level. The higher the similarity, the more similar 
the optimized structures of DFT and NNP are. We consider a similarity of 0.99 for 
identical structures.
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