Supplementary information: Superconductivity and high hardness in scandium-borides under pressure

Xiangru Tao,¹ Aiqin Yang,¹ Yundi Quan,¹ and Peng Zhang¹

¹MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, P.R.China

I. STRUCTURE INFORMATION

The crystal structures of all discovered thermodynamically stable and superconducting scandium-borides in our research are listed in Table I. The information of all other thermodynamically stable and superconducting scandium-borides are reference to previous researches [1, 2].

TABLE I: The crystal structures of the discovered thermodynamically stable and superconducting scandium-borides as presented in Fig. 1 of the main text.

Dhago	Space	Pressure (GPa)	Lattice Wyckoff Position				ositions	
1 mase	Group		Parameter	atoms	site	х	У	\mathbf{Z}
$\mathrm{Sc}_8\mathrm{B}$	R-3	0	a = 8.6373 c = 9.1605	Sc	18f	0.0240	0.7326	0.6010
				\mathbf{Sc}	6c	0.0000	0.0000	0.1923
				В	3b	0.0000	0.0000	0.5000
ScB	$P6_3/mmc$	260	a=2.7021 c=8.1520	Sc	4f	0.3333	0.6667	0.9181
				В	2b	0.0000	0.0000	0.2500
				В	2c	0.3333	0.6667	0.2500
	C2/m	0	a=8.7558	Sc	4i	0.0690	0.5000	0.7955
				В	4i	0.1069	0.0000	0.0938
ScB_4			c=7.2172	В	4i	0.1170	0.0000	0.5371
			$\beta = 119.67$	В	4i	0.2123	0.5000	0.1956
			<i>p</i> = = = = = = = = = = = = = = = = = = =	В	4i	0.2333	0.0000	0.3842
	P4/mmm	90	a=2.8386 c=5.2039	Sc	1d	0.5000	0.5000	0.5000
ScB_{6}				В	4i	0.0000	0.5000	0.1547
				В	2g	0.0000	0.0000	0.3304
	I4/mmm	90	a=2.8373 c=10.4185	\mathbf{Sc}	2a	0.0000	0.0000	0.0000
ScB_{6}				В	8 g	0.0000	0.5000	0.1727
				В	4e	0.0000	0.0000	0.4155
	Cmcm	90	a=2.7406 b=8.2914 c=8.2110	Sc	4c	0.0000	0.3312	0.7500
ScB_7				В	8f	0.0000	0.0466	0.6475
				В	8f	0.0000	0.1176	0.0386
				В	8f	0.0000	0.3213	0.0584
				В	4c	0.0000	0.3953	0.2500
ScB_{14}	Pm-3	0	a=4.7611	\mathbf{Sc}	1a	0.0000	0.0000	0.0000
				В	8i	0.3051	0.3051	0.3051
				В	6g	0.0000	0.1766	0.5000

II. EL-PH CALCULATIONS

	kmesh	qmesh
Sc_8B (R-3)	$9 \times 9 \times 9$	$3 \times 3 \times 3$
$ScB_4 (C2/m)$	$16{\times}16{\times}8$	$4{\times}4{\times}2$
ScB_4 (I4/mmm)	$18 \times 18 \times 9$	$6{\times}6{\times}3$
ScB_6 (P4/mmm)	$18 \times 18 \times 9$	$6{\times}6{\times}3$
ScB_6 (I4/mmm)	$12{\times}12{\times}12$	$4{\times}4{\times}4$
ScB_{14} (Pm-3)	$12 \times 12 \times 12$	$4 \times 4 \times 4$

TABLE II: The adopted k-points and q-points in calculations of all discovered superconductors.

III. FORMATION ENTHALPY OF SCB₄

In order to determine the thermodynamically stable phase of ScB_4 stoichiometry at low and medium pressures, we have calculated the formation enthalpy of three structures, ScB_4 (C2/m), ScB_4 (Pnma) and ScB_4 (I4/mmm), with high precision. As shown in Fig.1, ScB_4 (C2/m) has the lowest formation enthalpy in pressure range of 48-124 GPa.

FIG. 1: Formation enthalpy above the convex hull of ScB_4 (C2/m), ScB_4 (Pnma) and ScB_4 (I4/mmm) as a function of pressure. The zero energy points locate at the convex hull.

IV. BADER CHARGES

TABLE III: The atomic net charges from Bader charge analysis in ScB_4 (C2/m) at the ambient pressure.

Atom	site	Х	Y	Z	Charge (e)
Sc	4i	0.06897	0.5	0.79546	+1.46
В	4i	0.10686	0	0.09382	-0.55
В	4i	0.11696	0	0.53711	-0.50
В	4i	0.21233	0.5	0.19557	-0.51
В	4i	0.2333	0	0.38422	+0.09

TABLE IV: The atomic net charges from Bader charge analysis in ScB_{14} (Pm-3) at the ambient pressure.

Atom	site	Х	Y	Z	Charge (e)
\mathbf{Sc}	1a	0	0	0	+1.48
В	8i	0.3051	0.3051	0.3051	-0.12
В	6g	0	0.17663	0.5	-0.09

V. ELECTRONIC STRUCTURE

The total DOS, the bandstructures and the Fermi surfaces of all discovered superconducting scandium-borides at their lowest dynamically stable pressures are shown in Fig. 2, Fig. 3 and Fig. 4, respectively. The total DOS of insulating ScB_{15} (P4₁) at the ambient pressure is shown in Fig. 5.

FIG. 2: The total electronic DOS of (a) Sc_8B (R-3), (b) ScB_4 (C2/m), (c) $ScB_4(I4/mmm)$, (d) ScB_6 (P4/mmm), (e) ScB_6 (I4/mmm) and (f) ScB_{14} (Pm-3), at their lowest dynamically stable pressures.

FIG. 3: Projected band structure of superconducting scandium-borides (a) Sc_8B (R-3), (b) ScB_4 (C2/m), (c) ScB_4 (I4/mmm), (d) ScB_6 (P4/mmm), (e) ScB_6 (I4/mmm) and (f) ScB_{14} (Pm-3), at their lowest dynamically stable pressures.

FIG. 4: Fermi surface of superconducting scandium-borides (a) Sc_8B (R-3), (b) ScB_4 (C2/m), (c) $ScB_4(I4/mmm)$, (d) ScB_6 (P4/mmm), (e) ScB_6 (I4/mmm) and (f) ScB_{14} (Pm-3), at their lowest dynamically stable pressures.

FIG. 5: The total DOS of ScB_{15} (P4₁) at the ambient pressure.

VI. HARDNESS

The mechanical properties of the three superconducting scandium-borides, Sc_8B (R-3m), ScB_4 (C2/m) and ScB_{14} (P-3m), are calculated at the ambient pressure as shown in the following table. All data meet the stability criteria for the corresponding lattice type.[3]

TABLE V: The calculated elastic constants C_{ij} (GPa) of superconducting scandium-borides, Sc_8B (R-3m), ScB_4 (C2/m) and ScB_{14} (P-3m), at the ambient pressure.

Sc_8B (R-3m)									
113.835	33.795	40.191	-6.826	1.637	0				
33.795	113.835	40.191	6.826	-1.637	0				
40.191	40.191	98.979	0	0	0				
-6.826	6.826	0	32.422	0	-1.637				
1.637	-1.637	0	0	32.422	-6.826				
0	0	0	-1.637	-6.826	40.02				
		ScB_4 (C2/m)						
476.484	77.154	77.231	0	20.509	0				
77.154	527.696	62.026	0	-6.383	0				
77.231	62.026	431.766	0	27.511	0				
0	0	0	47.155	0	13.855				
20.509	-6.383	27.511	0	180.515	0				
0	0	0	13.855	0	199.496				
		ScB_{14}	(P-3m)						
365.786	175.148	175.148	0	0	0				
175.148	365.786	175.148	0	0	0				
175.148	175.148	365.786	0	0	0				
0	0	0	137.257	0	0				
0	0	0	0	137.257	0				
0	0	0	0	0	137.257				
ScB_{15} (P4 ₁)									
462.079	92.563	61.453	0	0	2.021				
92.563	462.079	61.453	0	0	-2.021				
61.453	61.453	478.950	0	0	0				
0	0	0	201.404	0	0				
0	0	0	0	201.404	0				
2.021	-2.021	0	0	0	205.098				

 [3] F. Mouhat and F. m. c.-X. Coudert, Phys. Rev. B 90, 224104 (2014), URL https://link.aps.org/doi/10.1103/PhysRevB. 90.224104.

K. Zhao, Q. Wang, W. Li, Q. Yang, H. Yu, F. Han, H. Liu, and S. Zhang, Phys. Rev. B 105, 094104 (2022), URL https://link.aps.org/doi/10.1103/PhysRevB.105.094104.

^[2] B.-H. Chu and Y. Zhao, Chinese Physics B 30, 076107 (2021), URL https://dx.doi.org/10.1088/1674-1056/abe116.