Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

Insight into the potential of M–NbS₂ (M = Pd, Ti and V) monolayer as anode materials for alkali ion (Li/Na/K) batteries

Meixia Xiao,*a Shuling Xu,^b Haiyang Song,^a Zhifei Sun,^c Jiaying Bi^a and Beibei Xiao^d

^aCollege of New Energy, Xi'an Shiyou University, Xi'an 710065, China.
^bSchool of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China.
^cOil Production Plant No. 11, PetroChina Changqing Oil feld Company, Xi'an 710016, China.
^dCollege of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

Fig. S1. Ball-and-stick representations of the 2H and 1T phases of NbS₂.

Fig. S2. The charge density difference of (a) Pd-NbS₂, (b) Ti-NbS₂ and (c) V-NbS₂ monolayers. The red- and blue-colored regions indicate the electron accumulation and loss, respectively.

Fig. S3. The Phonon spectrums of (a) $Pd-NbS_2$, (b) $Ti-NbS_2$ and (c) $V-NbS_2$ monolayers.

Fig. S4. Electronic band structures of (a) pristine-NbS₂, (b) Pd-NbS₂, (c) Ti-NbS₂ and (d) V-NbS₂ monolayers, where the Fermi energy is set to 0 eV.

Fig. S5. Main and side views of alkali ion migration from the " T_s " site to the hollow, " T_{Ti} ", " T_v ", or " T_{Nb} " sites on (a) Pd-NbS₂, (b) Ti-NbS₂ and (c) V-NbS₂ monolayers.

Fig. S6. Top and side views of (a) Pd-NbS₂, (b) Ti-NbS₂ and (c) V-NbS₂ monolayers with Li-ions multi-layer adsorption.

Fig. S7. Top and side views of (a) Pd-NbS₂, (b) Ti-NbS₂ and (c) V-NbS₂ monolayers with Na-ions multi-layer adsorption.

Fig. S8. Top and side views of (a) Pd-NbS₂, (b) Ti-NbS₂ and (c) V-NbS₂ monolayers with K-ions monolayer adsorption.

Fig. S9. Total energy evolution as a function of times over 1000 ps at 300 K for (a-c) Pd-NbS₂, (d-f) Ti-NbS₂, and (g-i) V-NbS₂ monolayers with the maximum Li/Na/K adsorption.

	Diffusion	Li dif	fusion	Na di	ffusion	K diffusion	
	pathways	$\Delta E_{\rm a}$	$\Delta E_{\rm r}$	$\Delta E_{\rm a}$	$\Delta E_{\rm r}$	$\Delta E_{\rm a}$	$\Delta E_{\rm r}$
pristine	$T_{Nb} {\rightarrow} H$	0.26	0.07	0.15	0.01	0.09	-0.01
NbS_2	$\mathrm{H} \to \mathrm{T}_{\mathrm{Nb}}$	0.19	-0.07	0.14	-0.01	0.10	0.01
	$T_{Nb} \mathop{\rightarrow} H$	0.23	0.18	0.15	0.01	0.12	0.02
$Pd-NbS_2$	$\mathrm{H} \to \mathrm{T}_{\mathrm{Nb}}$	0.06	-0.18	0.14	-0.01	0.10	-0.02
Pd-10052	$\mathrm{H} \rightarrow \mathrm{T}_{\mathrm{Pd}}$	0.00	-0.08	0.14	0.02	0.13	-0.01
-	$T_{Pd} \rightarrow H$	0.04	0.08	0.12	-0.02	0.13	0.01
	$T_{Nb} \mathop{\rightarrow} H$	0.27	0.09	0.16	0.03	0.10	0.01
T: MLC	$\mathrm{H} \to \mathrm{T}_{\mathrm{Nb}}$	0.18	-0.09	0.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.01	
	$H \to T_{Ti}$	0.20	-0.06	0.15	0.01	0.12	0.03
	$T_{Ti} {\rightarrow} H$	0.26	0.06	0.15	-0.01	0.09	-0.03
	$T_{Nb} \rightarrow H$	0.26	0.09	0.16	0.03	0.11	0.01
Pd-NbS ₂ - - - - - - - - - - - - - - - - - - -	$\mathrm{H} \to \mathrm{T}_{\mathrm{Nb}}$	0.17	-0.09	0.13	-0.03	0.09	-0.01
v-10032	$H \rightarrow T_V$	0.19	-0.08	0.15	0.01	0.11	0.02
	$T_V \to H$	0.27	0.08	0.14	-0.01	0.08	-0.02

Table S1. Calculated diffusion barrier (ΔE_a) and the reaction energy (ΔE_r) in eV of Li, Na and K diffusion on pristine NbS₂ and M-NbS₂ monolayers.

Table S2. Calculated diffusion constants (cm^2/s) of Li, Na and K ions on pristine-NbS₂ and M-NbS₂ monolayers.

	pristine-NbS ₂	Pd-NbS ₂	Ti-NbS ₂	V-NbS ₂
Li diffusion	4.87×10^{-7}	1.45×10^{-6}	3.60×10^{-7}	4.84×10^{-7}
Na diffusion	4.60×10^{-5}	$7.69 imes 10^{-5}$	3.28×10^{-5}	2.77×10^{-5}
K diffusion	5.66×10^{-4}	3.98×10^{-4}	4.93 × 10 ⁻⁴	3.14×10^{-4}

Table S3. The average open circuit voltage (OCV), adsorption energies E_{1st} , E_{2nd} , E_{3rd} and E_{4th} , and the maximum theoretical capacity C_m of M-NbS₂ monolayers with multilayer alkali ions adsorption.

Structure	Ion battarra	OCV	E_{1st}	E_{2nd}	E_{3rd}	$E_{4\text{th}}$	C_m
	battery	(v)	(ev)	(ev)	(ev)	(ev)	(mAn·g·)
	Li	0.17	-2.74	-1.74	-1.73	-1.73	1336.69
Pd-NbS ₂	Na	0.45	-1.92	-1.41	-1.37	-1.36	1336.69
	K	0.94	-1.69	١	\	\	334.17
Ti-NbS ₂	Li	0.23	-2.83	-1.85	-1.75	-1.75	1470.87
	Na	0.50	-2.14	-1.40	-1.40	-1.34	1470.87
	K	0.95	-1.68	١	١	١	367.72
V-NbS ₂	Li	0.22	-2.73	-1.87	-1.78	-1.76	1463.16
	Na	0.50	-2.11	-1.41	-1.37	-1.36	1463.16
	K	0.99	-1.64	١	١	١	365.79

Table S4. The change rate of the lattice constants (Δa) for M-NbS₂ monolayers with maximum alkali ions adsorption.

Structure	Pd-NbS ₂		Ti-NbS ₂			V-NbS ₂			
battery	Li	Na	Κ	Li	Na	Κ	Li	Na	Κ
a (Å)	6.631	6.631	6.631	6.697	6.697	6.697	6.640	6.640	6.640
∆ a (%)	3.474	5.469	8.844	1.472	3.254	5.797	2.023	3.378	5.675

Pd-NbS₂CIF

data NbS2\22-Pd1-L1 2024-09-25 audit creation date _audit_creation_method 'Materials Studio' 'P1' symmetry space group name H-M 1 _symmetry_Int_Tables_number triclinic _symmetry_cell_setting loop_ _symmetry_equiv_pos_as_xyz x,y,z _cell_length_a 6.6317 _cell_length_b 6.6317 37.2967 cell_length_c 90.0000 _cell_angle_alpha 90.0000 cell angle beta _cell_angle_gamma 120.0000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy Nb1 Nb -0.00340 0.00340 0.50000 0.00000 Uiso S S2 0.15654 0.32827 0.45673 0.00000 Uiso S3 S 0.15654 0.32827 0.54327 0.00000 Uiso Nb4 Nb 0.50681 0.00340 0.50000 0.00000 Uiso S5 S 0.00000 Uiso 0.67173 0.32827 0.45673 S6 S 0.67173 0.32827 0.54327 0.00000 Uiso Nb7 Nb -0.00340 0.49319 0.50000 0.00000 Uiso **S**8 S 0.16667 0.83334 0.45767 0.00000 Uiso S9 S 0.16667 0.83334 0.54233 0.00000 Uiso Pd10 Pd 0.50000 0.50000 0.50000 0.00000 Uiso S11 S 0.67173 0.84347 0.45673 0.00000 Uiso S S12 0.67173 0.54327 0.00000 Uiso 0.84347 loop _geom_bond_atom_site_label_1

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

_geom_bond_atom_site_label_2

geom bond distance

_geom_bond_site_symmetry_2

_ccdc_geom_bond_type

Nb1	S3	2.467	•	S
Nb1	S12	2.467	1_445	S
Nb1	S9	2.512	1_545	S
Nb1	S2	2.467		S
Nb1	S11	2.467	1_445	S
Nb1	S 8	2.512	1_545	S
S2	Pd10	2.549		S
S2	Nb7	2.467		S
S3	Pd10	2.549		S
S3	Nb7	2.467		S
Nb4	S 6	2.467		S
Nb4	S9	2.512	1_545	S
Nb4	S12	2.467	1_545	S
Nb4	S5	2.467		S
Nb4	S 8	2.512	1_545	S
Nb4	S11	2.467	1_545	S
S5	Nb7	2.467	1_655	S
S5	Pd10	2.549		S
S6	Nb7	2.467	1_655	S
S6	Pd10	2.549		S
Nb7	S9	2.512		S
Nb7	S 6	2.467	1_455	S
Nb7	S 8	2.512		S
Nb7	S5	2.467	1_455	S
S 8	Nb4	2.512	1_565	S
S 8	Nb1	2.512	1_565	S
S9	Nb4	2.512	1_565	S
S9	Nb1	2.512	1_565	S
Pd10	S12	2.549		S
Pd10	S11	2.549		S
S11	Nb1	2.467	1_665	S
S11	Nb4	2.467	1_565	S
S12	Nb1	2.467	1_665	S
S12	Nb4	2.467	1_565	S

Ti-NbS₂CIF data NbS2\22-Ti1-L1 2024-09-25 audit creation date _audit_creation_method 'Materials Studio' 'P1' symmetry space group name H-M 1 _symmetry_Int_Tables_number triclinic _symmetry_cell_setting loop_ _symmetry_equiv_pos_as_xyz x,y,z _cell_length_a 6.6967 _cell_length_b 6.6967 cell_length_c 37.3781 90.0000 _cell_angle_alpha 90.0000 cell angle beta _cell_angle_gamma 120.0000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy Nb1 Nb -0.00281 0.00281 0.50000 0.00000 Uiso S S2 0.17087 0.33544 0.45801 0.00000 Uiso S3 S 0.17087 0.33544 0.54199 0.00000 Uiso Nb4 Nb 0.50562 0.00281 0.50000 0.00000 Uiso S5 S 0.00000 Uiso 0.66456 0.33544 0.45801 S6 S 0.66456 0.33544 0.54199 0.00000 Uiso Nb7 Nb -0.00281 0.49437 0.50000 0.00000 Uiso **S**8 S 0.16667 0.83333 0.45827 0.00000 Uiso S9 S 0.16667 0.83333 0.54173 0.00000 Uiso Ti10 Ti 0.50000 0.50000 0.50000 0.00000 Uiso S11 S 0.66456 0.82912 0.45801 0.00000 Uiso S S12 0.66456 0.82912 0.54199 0.00000 Uiso loop _geom_bond_atom_site_label 1 _geom_bond_atom_site_label_2

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

_geom_bond_distance

_geom_bond_site_symmetry_2

_ccdc_geom_bond_type

Nb1	S3	2.487		S
Nb1	S12	2.487	1_445	S
Nb1	S9	2.509	1_545	S
Nb1	S2	2.487		S
Nb1	S11	2.487	1_445	S
Nb1	S 8	2.509	1_545	S
S2	Ti10	2.471		S
S2	Nb7	2.487		S
S3	Ti10	2.471		S
S3	Nb7	2.487		S
Nb4	S6	2.487		S
Nb4	S9	2.509	1_545	S
Nb4	S12	2.487	1_545	S
Nb4	S5	2.487		S
Nb4	S 8	2.509	1_545	S
Nb4	S11	2.487	1_545	S
S5	Nb7	2.487	1_655	S
S5	Ti10	2.471		S
S6	Nb7	2.487	1_655	S
S6	Ti10	2.471		S
Nb7	S9	2.509		S
Nb7	S6	2.487	1_455	S
Nb7	S 8	2.509		S
Nb7	S5	2.487	1_455	S
S8	Nb4	2.509	1_565	S
S 8	Nb1	2.509	1_565	S
S9	Nb4	2.509	1_565	S
S9	Nb1	2.509	1_565	S
Ti10	S12	2.471		S
Ti10	S11	2.471		S
S11	Nb1	2.487	1_665	S
S11	Nb4	2.487	1_565	S
S12	Nb1	2.487	1_665	S
S12	Nb4	2.487	1_565	S

V-NbS₂ CIF data NbS2\22-V1-L1 2024-09-25 audit creation date _audit_creation_method 'Materials Studio' 'P1' symmetry space group name H-M 1 _symmetry_Int_Tables_number triclinic _symmetry_cell_setting loop_ _symmetry_equiv_pos_as_xyz x,y,z _cell_length_a 6.6397 _cell_length_b 6.6397 37.3948 cell_length_c 90.0000 _cell_angle_alpha 90.0000 cell angle beta _cell_angle_gamma 120.0000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy Nb1 Nb -0.00029 0.00029 0.50000 0.00000 Uiso S S2 0.17589 0.33794 0.45852 0.00000 Uiso S3 S 0.17589 0.33794 0.54148 0.00000 Uiso Nb4 Nb 0.50058 0.00029 0.50000 0.00000 Uiso S5 S 0.33794 0.00000 Uiso 0.66205 0.45852 S6 S 0.66205 0.33794 0.54148 0.00000 Uiso Nb7 Nb -0.00029 0.49942 0.50000 0.00000 Uiso **S**8 S 0.16667 0.83333 0.45761 0.00000 Uiso S9 S 0.16667 0.83333 0.54239 0.00000 Uiso V10 V 0.50000 0.50000 0.50000 0.00000 Uiso S11 S 0.66205 0.82411 0.45852 0.00000 Uiso S12 S 0.66205 0.82411 0.54148 0.00000 Uiso loop _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 geom bond distance _geom_bond_site_symmetry_2

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

_ccdc_geom_bond_type

Nb1	S3	2.486	•	S
Nb1	S12	2.486	1_445	S
Nb1	S9	2.490	1_545	S
Nb1	S2	2.486		S
Nb1	S11	2.486	1_445	S
Nb1	S 8	2.490	1_545	S
S2	V10	2.425		S
S2	Nb7	2.486		S
S3	V10	2.425		S
S3	Nb7	2.486		S
Nb4	S 6	2.486		S
Nb4	S9	2.490	1_545	S
Nb4	S12	2.486	1_545	S
Nb4	S5	2.486		S
Nb4	S 8	2.490	1_545	S
Nb4	S11	2.486	1_545	S
S5	Nb7	2.486	1_655	S
S5	V10	2.425		S
S6	Nb7	2.486	1_655	S
S6	V10	2.425		S
Nb7	S9	2.490		S
Nb7	S 6	2.486	1_455	S
Nb7	S 8	2.490		S
Nb7	S5	2.486	1_455	S
S 8	Nb4	2.490	1_565	S
S8	Nb1	2.490	1_565	S
S9	Nb4	2.490	1_565	S
S9	Nb1	2.490	1_565	S
V10	S12	2.425		S
V10	S11	2.425		S
S11	Nb1	2.486	1_665	S
S11	Nb4	2.486	1_565	S
S12	Nb1	2.486	1_665	S
S12	Nb4	2.486	1_565	S