Supplementary Information for

Prediction of high-temperature superconductors at ambient

pressure with diamond-like structures: $B_2CX(X = N, P)$

Yi Wan,^a Ying-Jie Chen,^{*a} Shu-Xiang Qiao,^a Kai-Yue Jiang,^a Guo-Hua Liu,^a Na Jiao,^a Ping Zhang,^{ab} Hong-Yan Lu^{*a}

^a School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
 ^b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

*Corresponding authors. E-mail: sdchenyj@qfnu.edu.cn (Ying-Jie Chen); hylu@qfnu.edu.cn (Hong-Yan Lu)

I. SUPPLEMENTAL FORMULAS

The total EPC constant λ is obtained via isotropic Eliashberg function ¹⁻³

$$\alpha^{2}F(\omega) = \frac{1}{2\pi N(E_{F})} \sum_{qv} \delta(\omega - \omega_{qv}) \frac{\gamma_{qv}}{\omega_{qv}},$$
(S1)

$$\lambda = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega = \sum_{qv} \lambda_{qv}, \qquad (S2)$$

where $\alpha^2 F(\omega)$ is Eliashberg function and $N(E_F)$ is the DOS at the Fermi level, ω_{qv} is the phonon frequency of the vth phonon mode with wave vector q, and γ_{qv} is the phonon linewidth ¹⁻³. The γ_{qv} can be estimated by

$$\gamma_{qv} = \frac{2\pi\omega_{qv}}{\Omega_{\rm BZ}} \sum_{k,n,m} \left| g_{kn,k+qm}^{v} \right|^2 \delta(\varepsilon_{kn} - E_F) \delta(\varepsilon_{k+qm} - E_F), \tag{S3}$$

where Ω_{BZ} is the volume of the BZ, ε_{kn} and ε_{k+qm} indicate the Kohn-Sham energy, and $g_{kn,k+qm}^{v}$ represents the screened electron-phonon matrix element. λ_{qv} is the EPC constant for phonon mode qv, which is defined as

$$\lambda_{qv} = \frac{\gamma_{qv}}{\pi \hbar N(E_F)\omega_{qv}^2}.$$
(S4)

 T_c is estimated by McMillan-Allen-Dynes formula ³

$$T_{c} = \frac{\omega_{log}}{1.2} exp \left[\frac{-1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)} \right].$$
 (S5)

The Coulomb repulsion μ^* in Eq.(S5) is set to 0.10 and the logarithmic average of the phonon frequencies ω_{log} is defined as

$$\omega_{log} = exp \left[\frac{2}{\lambda} \int \alpha^2 F(\omega) \frac{\ln \omega}{\omega} d\omega \right].$$
 (S6)

Furthermore, to estimate the thermodynamic properties such as critical magnetic field $H_c(0)$, superconducting gap $\Delta(0)$, specific heat jump $\Delta C(T_c)$ and isotope coefficient β , we used the following semiempirical formulas ⁴

$$\frac{\gamma T_c^2}{H_c^2(0)} = 0.168 \left[1 - 12.2 \left(\frac{T_c}{\omega_{log}} \right)^2 \ln \left(\frac{\omega_{log}}{3T_c} \right) \right],\tag{S7}$$

$$\frac{2\Delta(0)}{k_B T_c} = 3.53 \left[1 + 12.5 \left(\frac{T_c}{\omega_{log}} \right)^2 \ln \left(\frac{\omega_{log}}{2T_c} \right) \right],\tag{S8}$$

$$\frac{\Delta C(T_c)}{\gamma T_c} = 1.43 \left[1 + 53 \left(\frac{T_c}{\omega_{log}} \right)^2 \ln \left(\frac{\omega_{log}}{3T_c} \right) \right],\tag{S9}$$

$$\beta = \frac{1}{2} \left[1 - \frac{1.04(1+\lambda)(1+0.62\lambda)}{[\lambda - \mu^*(1+0.62\lambda)]^2} \mu^{*2} \right],$$
(S10)

here k_B is the Boltzmann constant and γ is the Sommerfeld constant, which can be obtained by

$$\gamma = \frac{2}{3}\pi^2 k_B^2 N(E_F)(1+\lambda).$$
 (S11)

II. SUPPLEMENTAL FIGURES

Fig. S1. Phonon spectra of (a) d-B₂CN, (b) d-B₂CP-I and (c) d-B₂CP-II.

Fig. S2. AIMD simulations of (a) d-B₂CN, (b) d-B₂CP-I and (c) d-B₂CP-II at 300 K.

Fig. S3. Orbital-projected band structures of (a) B, (b) C and (c) P for d-B₂CP-II along the high-symmetry line Γ -A-L- Γ -M-K-H. (d) Total DOS of d-B₂CP-II, B, C and P.

Fig. S4. (a) Phonon dispersion weighted by the magnitude of EPC λ_{qv} , (b) PhDOS, (c) Eliashberg spectral function $\alpha^2 F(\omega)$ and cumulative frequency dependence of EPC $\lambda(\omega)$ for d-B₂CP-II. (d)-(f) Its VMs for the prominent λ_{qv} I, II and III, respectively.

Fig. S5. Critical temperature T_c as a function of Coulomb pseudopotential μ^* for *d*-B₂CN, *d*-B₂CP-I and *d*-B₂CP-II. The vertical line marks the value $\mu^* = 0.10$ used in this work.

Notes and references

- 1 W. McMillan, Phys. Rev. B, 1968, 167, 331.
- 2 R. Dynes, Solid State Commun., 1972, 10, 615.
- 3 P. B. Allen and R. Dynes, *Phys. Rev. B*, 1975, 12, 905.
- 4 J. Carbotte, Rev. Mod. Phys., 1990, 62, 1027.