Tunable Band Gaps and Conduction Band Edges of CdS/ZnS Heterostructures

- A First-Principles-Based Prediction

Fengai Zhao,^{a,*} Dingbo Zhang^a, Yuxiang Ni^a, Hongyan Wang^a and Shuming Peng^b

^aSchool of Physical Science and Technology, Southwest Jiaotong University, Chengdu,

Sichuan 610031, China

^bInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics,

Mianyang 621900, Sichuan, China

The density of states for the $Cd_{0.5}Zn_{0.5}S$ solid solution was calculated to further investigate the differences between the solid solution effect and the covalent heterostructure effect on improved photocatalytic performance. The structural model for the $Cd_{0.5}Zn_{0.5}S$ solid solution was constructed using the special quasi-random structure (SQS) approach. Our calculations reveal that the band gap for the $Cd_{0.5}Zn_{0.5}S$ solid solution is 2.68 eV (Figure S1), which is significantly larger than the 2.07 eV observed for the $(CdS)_5/(ZnS)_5$ heterostructure. The reduced band gap in the CdS-ZnS heterostructure naturally leads to enhanced photocatalytic performance. These findings indicate that, for the CdS-ZnS system, the covalent heterostructure effect plays a more significant role in improving photocatalytic performance compared to the solid solution effect.

Figure S1. Density of states for a $Cd_{0.5}Zn_{0.5}S$ solid solution.