Additive-assisted oriented growth of cobalt oxide: controlled

morphology and enhanced supercapacitor performance

Radhika S. Desai^a, Vinayak S. Jadhav^a, Sidharth R. Pardeshi^b, Pramod S. Patil^{c,d}, Rafe H.Mohammad^e, Anil K. Yedluri^f, Dhanaji S. Dalavi^{a*}

^aDepartment of Physics, Krishna Mahavidyalaya, Rethare Bk, Post-Shivnagar, Tal- Karad, Dist. Satara 415108, Maharashtra, India.

^bDepartment of Physics, Mahindra University, Hyderabad, India

^cDepartment of Physics, Shivaji University, Kolhapur, 416004, India.

^dNational Dong Hwa University, Hualien, Taiwan.

^eDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

^fSaveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.

*E-mail: <u>dhanuphysics@gmail.com</u> (Dhanaji S. Dalavi)

Fig. S₁ CV analysis data of (a) C-Urea (b) C-NH₄Cl (c) C-NH₄OH (d) C-NH₄F and (e) C-HMT samples at different scan rates upon application of potential 0 to 0.6 V.

Fig. S₂ GCD analysis data of (a) C-Urea (b) C-NH₄Cl (c) C- NH₄OH (d) C-NH₄F and (e) C-HMT samples at different current densities.

Fig. S_3 Dependence of redox peak current on the scan rate for the synthesized sample and inset redox peak current *vs* square root scan rate.

Table S $_1$ Analysis of CV measurements of all synthesized samples.

			1							
Samples Scan rate	C-Urea		C- NH₄Cl		C- NH₄OH		C- NH ₄ F		С-НМТ	
	Anodic peak current ⁱ pa(mA/cm²)	Cathodic peak current i _{pc} (mA/cm ²)	Anodic peak current ⁱ pa(mA/cm²)	Cathodic peak current i_{pc} (mA/cm ²)	Anodic peak current ⁱ pa(mA/cm²)	Cathodic peak current i_{pc} (mA/cm ²)	Anodic peak current ⁱ pa(mA/cm²)	Cathodic peak current i_{pc} (mA/cm ²)	Anodic peak current ⁱ pa(mA/cm²)	Cathodic peak current i _{pc} (mA/cm ²)
5 mV s-1	1.0999	-0.7944	2.8120	-2.2182	2.3246	-1.8353	2.7507	-1.9405	5.5345	-4.3018
10 mV s ⁻¹	1.7750	-1.3956	4.7834	-3.8716	3.9528	-3.2539	4.8647	-3.1554	9.6478	-7.5351
20 mV s ⁻¹	3.1762	-2.4856	8.0422	-6.3984	6.6847	-5.5391	9.0382	-4.7065	16.3281	-12.8885
40 mV s ⁻¹	5.5277	-4.3143	12.8688	-10.3023	11.2236	-9.1747	17.2542	-7.4926	27.1808	-21.5865
60 mV s ⁻¹	7.5811	-5.9031	15.9275	-13.4162	15.3020	-12.1580	22.0945	-9.7683	36.5024	-28.9577
80 mV s ⁻¹	9.4031	-7.3456	19.7650	-15.8179	18.5915	-14.7481	26.2622	-11.6597	44.8136	-35.2725
100 mV s ⁻¹	11.1593	-8.6544	21.0319	-17.0440	21.0559	-17.0293	27.5618	-13.3235	52.5287	-40.9790

Deposition technique	Morphology	Capacitance	Energy density, power density, and coulombic efficiency	Cycle stability	Electrolyte	Ref.
single-step solution precursor plasma spray route.	Nanoparticle (10–50 nm)	~162 F g ⁻¹ at 2.75 A g ⁻¹	-	72.2% after 1000 cycles	6 М КОН	[4]
Potentiodynamic electrodeposition method	nanoflakes	365 F g ⁻¹ at 5 mV s ⁻¹ .	64 Wh kg ⁻¹ , 21.53 kW kg ⁻¹ , and 99 %	92 % of initial capacity over 2,000 cycles	1M KOH	[5]
potentiodynamically synthesized cobalt oxide	agglomeration of granular micro- particles	441.17 F g ⁻¹ 2 mV s ⁻¹	-	87.88% stability after 1000 cycles at 40 mA/cm ² .	1 М КОН	[6]
low-temperature wet chemical synthesis strategy	nano-needles	66.40 mAh g ⁻¹ at 1 mA cm ⁻²	-	-	NaOH, KOH and Na ₂ SO ₄	[7]
potentiostatically	nanoparticles	284.4 F g ⁻¹ at 5 mV s ⁻¹	4.325 Wh kg ⁻¹ , 3 kW kg ⁻¹ , 53.75 %	-	1 M Na ₂ SO ₄	[8]
Hydrothermal	urchin	536 F g ⁻¹ at 4 A g ⁻¹		23% after 5000 charge- discharge cycles current density of 4 A g ⁻¹	3 М КОН	[34]
Electrodeposition	nanoplates	393.6 F g ⁻¹ at 1 A g ⁻¹		96.5% after 500 charge- discharge cycles	1 М КОН	[43]
Electrodeposition	nanoflakes	$315 \text{ F g}^{-1} \text{ at } 5 \text{ mV} \text{ s}^{-1}$			0.5 M Na2SO4	[44]
Hydrothermal	nanoflakes	454 F g ⁻¹ at 2 A g ⁻¹		High capacitance retention after 2500 charge-discharge cycle	2 М КОН	[45]
Hydrothermal synthesis	Nanosheets	468.68 F g ⁻¹ at a 5 mV s ⁻¹		98.31 % of its initial capacitance after 10000 cycles	2 М КОН	This work

Table S₂. Literature data on pristine Co_3O_4 thin film on a steel substrate.