
Supplementary Information
Electronic structure of norbornadiene and quadricyclane

Joseph C. Cooper and Adam Kirrander1

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of
Oxford, South Parks Road, Oxford, UK, OX1 3QZ

Contents

1 Orbitals 2

2 Geometry parameters 3

3 Excitation energies 3

4 LIIC geometries 5

5 Conical intersections 6

6 Location of Rydberg states 11

7 MRCI 14

8 SHCI and LR-CCSD 17

9 Other multi-reference methods 20

10 Basis sets 22

11 Nature of the potential energy surfaces 25

12 Summary of Calculations 27

13 CASSCF(4,3) 27

14 Important geometries 28

1adam.kirrander@chem.ox.ac.uk

1

Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2025



1 Orbitals

Figure S1: Orbitals (isosurface value of 0.05) for CASSCF(4,4)/p-cc-(p)VDZ at the NBD geometry.
We use the same labelling as Fig. 2 in the main text

.

In Figure S1, we show the orbitals in NBD for CASSCF(4,4), which match Fig. 2 in the
main text. For the CASSCF(2,2)/p-cc-(p)VDZ calculations, as shown in Figu. S2, the state-
averaged (SA) natural orbitals do not resemble the orbitals of the (4,4) active space. This is
due to the effect of the S2 state, which is not well described, adding asymmetry. If we look
at the natural orbitals for the S0 state (or the S1 state), then we can see the more familiar
shapes, akin to the 𝐵1 and 𝐵2 orbitals in the (4,4) active space. The asymmetry in the
orbitals does not affect the calculations — the two sets of orbitals are simply a rotation of
each other.

Figure S2: Orbital (iso-surface value of 0.05) for CASSCF(2,2)/p-cc-(p)VDZ at the NBD geometry.
On the right, we show the state-averaged (SA) natural orbitals, which exhibit pronounced asym-
metry. The state-specific orbitals for the S0 state (left, S1 state gives similar results), do not show
this asymmetry, and look much closer to Fig. S1.
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2 Geometry parameters

Table S1: Geometry parameters for ground state optimised geometries, calculated using CASSCF
and XMS-CASPT2 for various basis sets and active spaces. All geometries are C2𝑣 , making 𝑟rh = 0.
The reference calculations (MP2/aug-cc-pVQZ) are taken from our previous work.1 All distances
in Ångström. The (4,3) and (4,4) active spaces are unstable around the QC ground state minimum,
so those results are not included.

QC NBD
Basis Active space Method 𝑟cc 𝑟db 𝑟12 𝑟14
p-cc-(p)VDZ (2,2) CASSCF 1.549 1.530 2.476 1.330

XMS-CASPT2 1.518 1.555 2.473 1.365
MRCI 1.535 1.538 2.474 1.339

(4,3) CASSCF 2.472 1.332
XMS-CASPT2 2.474 1.365

(4,4) CASSCF 2.474 1.352
XMS-CASPT2 2.483 1.356

ANO-L-VTZ(p) (2,2) CASSCF 1.552 1.525 2.470 1.322
XMS-CASPT2 1.503 1.544 2.455 1.351

aug-cc-pVQZ HF MP2 1.515 1.538 2.462 1.339

3 Excitation energies
Table S2 shows the vertical excitation energies for S1 and S2, calculated from the NBD
ground state. We also show the experimental value (5.25 eV). Most correlated methods
predict the excitation energy in the right ballpark, with energies in the 5.25± 0.4 eV range.
We note that the steeply sloped nature of this state could significantly affect the excitation
energies, as a small displacement of the nuclear geometry leads to a relatively large change
in excitation energy. As we use the same geometries (MRCI(2,2) for correlated methods,
CASSCF(2,2) for non-correlated) across all comparisons, the calculations are not at the exact
minimum for each of the methods, which could affect the excitation energy. Of particular
note are the values for CASSCF(4,4), which is over 2 eV higher than the predictions of
the other methods, and MRCI(4,4), which fails to significantly correct for the errors in
CASSCF(4,4). SAC-CI calculations were performed using the Gaussian 16 package.2
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Table S2: Calculated vertical excitation energies in NBD in eV. Experimentally, the state is posited
to have a vertical excitation of ≈5.25 eV, but the dissociative nature and lack of oscillator strength
make this assignment difficult. All calculations are performed on MRCI(2,2)/p-cc-(p)VDZ ground
state minimum geometry, except CASSCF calculations, which are performed on CASSCF(2,2)/p-
cc-(p)VDZ geometry. The MP2/aug-cc-pV6Z value is taken from Cooper et al..1 Values next to
CASPT2 in brackets indicate shift values, with IPEA indicating that the IPEA shift was used with
the recommended value of 0.25 Eh. (2,2) and (4,4) active space calculations are state-averaged over
three states, and (4,3) over four. ANO-L-VTZ(p) indicates an ANO-L-VTZP basis on the carbon
atoms and an ANO-L-VTZ basis on the hydrogens. For the (4,3) active space, the two energies are
from the 11𝐴2 and 21𝐴1 states, ignoring the 11𝐵2 state.

Basis (𝑛,𝑚) Method S1 |2ud0⟩ S2 |2020⟩
Exp. 5.25
p-cc-(p)VDZ (2,2) CASSCF 5.96 11.24

MS-CASPT2 (0.2i) 4.85 8.55
MS-CASPT2 (IPEA, 0.2i) 5.21 8.84
XMS-CASPT2 (0.1i) 5.40 7.71
XMS-CASPT2 (0.2i) 5.41 7.85
XMS-CASPT2 (0.4i) 5.43 8.44
MRCI 5.74 10.34
MRCI+Q (DV1) 5.68 9.89
MRCI+Q (DV2) 5.66 9.69
MRCI+Q (DV3) 5.62 9.26
MRCI+Q (Pople) 5.63 9.40
QD-NEVPT2 5.36 8.14
XMC-QDPT2 5.44 8.09
HCI(20, 80, 𝜖1 = 10−4 ) 5.83
SHCI(20, 80, 𝜖1 = 10−4, 𝜖2 = 10−7) 5.72

(4,3) CASSCF 6.09 8.18
XMS-CASPT2 (0.2i) 5.30 7.85

(4,4) CASSCF 7.55 8.00
XMS-CASPT2 (0.2i) 5.01 8.01
MRCI 6.47 8.13
MRCI+Q (DV1) 6.01 8.20
MRCI+Q (DV2) 5.83 8.22
MRCI+Q (DV3) 5.47 8.25
MRCI+Q (Pople) 5.59 8.24

HF LR-CC3 5.56
LR-CCSD 5.70
LR-CC2 5.46
SAC-CI 5.64

aug-cc-pVTZ HF LR-CCSD 5.57
LR-CC2 5.34

ANO-L-VTZ(p) (2,2) CASSCF 5.93 11.19
XMS-CASPT2 (0.2i) 5.28 7.66

ANO-L-VQZP (2,2) CASSCF 5.89 11.15
XMS-CASPT2 (0.2i) 5.26 7.66

aug-cc-pV6Z HF ADC(2) 5.34
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4 LIIC geometries
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Figure S3: Carbon-carbon distance coordinates for the two LIICs used in the (𝑟cc , 𝑟rh)-plane, with
key geometries labelled. All geometries are calculated at CASSCF(2,2)/p-cc-(p)VDZ level. The
projection of the two branching plane coordinates 𝑋 and 𝑌 into the plane are also shown (cf Fig.
12, main text).

In Fig. S3, we show the two different LIICs. The QC↔S1/S0 MECI↔NBD LIIC (solid
purple line) travels straight between the minima and the conical intersection, conserving
𝐶2 symmetry (approximately, as calculations are run without symmetry turned on). For
the S1/S0 MECI↔S1 minimum↔NBD LIIC, the first part of the pathway traverses from
the conical intersection to the S1 minimum, maintaining (approximate) 𝐶2 symmetry. The
second part of the pathway holds 𝑟rh = 0, maintaining 𝐶2𝑣 symmetry. From here, it is clear
that we do not need to plot the QC↔S1/S0 MECI on both pathways.
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5 Conical intersections

X Y

Figure S4: Branching plane X and Y vectors from S1/S0 MECI, optimised at XMS-CASPT2(2,2)/p-
cc-(p)VDZ level. These vectors are very similar to the CASSCF(2,2) vectors shown in the main text,
and all other methods tested here.

Figure S5: S1/S0 MECI geometries for all combinations of CASSCF, MRCI, and XMS-CASPT2, and
the (2,2) and (4,4) active spaces overlaid. All geometries show approximately the same distortions
from the ground state minima.

Firstly, we show the branching plane vectors from XMS-CASPT2(2,2)/p-cc-(p)VDZ in Fig.
S4. These compare well with the CASSCF(2,2) vectors shown in the main text, with
only very minor changes in the direction of the vectors. All methods also give very
similar optimised geometries, as discussed in Table 2 in the main text. The geometries are
shown superimposed in Fig. S5. There are minor differences (especially in the hydrogens
attached to the four-carbon ring), but the overall features of the geometry are replicated in
all methods.
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Figure S6: Appropriateness of local linear approximation in the S1/S0 conical intersection: Analyti-
cal local linear representation (purple and light blue surfaces) against CASSCF(2,2) (rose and green
surface) calculations inside the branching plane. The agreement is excellent, demonstrating that
the local linear approximation is reasonable in the plotted region. Parameters taken from SA(3)-
CASSCF/p-cc-(p)VDZ optimised geometry. Square surfaces are the ab initio results, the round
surfaces the local linear representation.
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Figure S7: Appropriateness of local linear approximation in the S1/S0 conical intersection: Cal-
culated ab initio (solid purple) energies vs analytical local linear representation (dashed rose) as
a function of polar angle 𝜃 at a distance of 0.02 Å around the S1/S0 MECI. Left: Energies and
MECI calculated at SA(3)-CASSCF/p-cc-(p)VDZ level. Right: Energies and MECI calculated at
XMS-CASPT2(2,2)/p-cc-(p)VDZ level. For both calculations, the analytical representation matches
the calculated energies well, with only a slight underestimation. One can see the difference in
‘single-path’ vs ‘bifurcating’ intersections by the small minimum on the lower surface at 𝜃 ≈ 7𝜋

4 .
The 𝜃 is defined to be 0 along the positive 𝑋 direction, and 𝜋

2 along the positive 𝑌 direction.

The energies in the branching plane are approximated according to the formula taken
from the original work of Fdez.-Galván et al.,3

𝐸±(𝑟, 𝜃) = 𝛿𝑔ℎ𝑟

(
𝜎 cos(𝜃 − 𝜃𝑠) ±

√
1 + Δ𝑔ℎ cos(2𝜃)

)
,

where 𝐸± are the energies of the two states relative to the minimum energy crossing point,
𝑟 and 𝜃 are the polar distance and angle, and 𝛿𝑔ℎ , Δ𝑔ℎ , 𝜎 and 𝜃𝑠 are various parameters
taken from the ab initio calculation at the optimised geometry (more details in Fdez.-Galvan
et al.3).

For small 𝑟, these provide an excellent approximation of the local potential energy
surfaces around the conical intersection. This can be seen clearly in Figs. S6 and S7, which
compare the energies of ab initio calculations to the local linear representations. Figure
S6 shows the linear representation (the two circular surfaces) and the energies of ab initio
calculations (the square surfaces). Clearly, the two surfaces are almost on top of one
another. This might be easier to see in Fig. S7, which show the potential energies on a
circular trip around the minimum energy conical intersection (at 𝑟 = 0.02 Å). Here, the
agreement between the analytical representation and the energies calculated using ab initio
methods is clearly very good.
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Figure S8: Local linear approximations to the energy in the branching plane around the S1/S0
MECI geometries, optimised for CASSCF, XMS-CASPT2, and MRCI with both the (2,2) and (4,4)
active spaces (columns represent methods, rows active spaces). S1 is shown in light blue, S0 in
purple. The values 𝑃 and 𝐵 are discussed in the main text and are found using the methods of
Fdez.-Galvan et al.. The NBD ground state minimum is roughly towards positive 𝑋 and negative
𝑌, whereas the QC ground state minimum is towards negative 𝑋 and negative𝑌. To the naked eye,
all methods show a similar energy landscape in the branching plane except CASSCF(4,4) (bottom
left), which shows a slightly more tilted geometry with a less obvious second minimum. These
plots are shown with energy in eV and distance in Ångström.

In Fig. S8, we show the local linear representation of the energies in the branching
plane of the S1/S0 MECIs for all combinations of the (2,2) and (4,4) active space and SA(3)-
CASSCF, XMS-CASPT2, and MRCI. Almost all methods agree about the rough shape of
the intersection, with a notable ridge approximately along the 𝑋 = 0 line. The notable
exception is CASSCF(4,4), which gives a more slanted overall intersection, with a shallower
minimum towards the negative 𝑋 direction (towards QC).
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5.1 The S2/S1 conical intersection

S1/S0
CI

Figure S9: Energies in the branching plane of S2/S1 conical intersection, using the local linear
representation3. This is a peaked, bifurcating intersection. The branching plane vectors are shown
in Figure S10, with 𝑋 breaking the symmetry and 𝑌 preserving it. The conical intersection was
optimised using XMS-CASPT2(4,4)/p-cc-(p)VDZ. An illustrative trajectory is shown, which would
travel from NBD to the S1/S0 conical intersection, missing the S2/S1 conical intersection

Figure S10: Branching plane vectors for the S2/S1 conical intersection, optimised using XMS-
CASPT2(4,4)/p-cc-(p)VDZ. The 𝑋 vector is a rhombic displacement, which takes the molecule
almost directly to the S1/S0 conical intersection, while the 𝑌 vector is very similar to the displace-
ment vector from NBD to QC. All vectors are almost entirely within the plane of the figure.

10



Finally, we mentioned the presence of a S2/S1 conical intersection. When using XMS-
CASPT2(4,4)/p-cc-(p)VDZ (it does not exist in CASSCF(2,2)), the intersection can be found
at (𝑟cc, 𝑟rh, 𝑟db) ≈ (2.01, 0, 1.48) Å, close to the S1 minimum. Figure S9 shows the branching
plane energies for this intersection, calculated using the same method as in the main text3.
It is clear that this is a peaked intersection with clear bifurcating character. By looking
at the vectors in the branching plane (shown in Fig. S10), we can identify the 𝑋 direction
as breaking the symmetry with a rhombic displacement (increasing magnitude of 𝑟rh),
while the 𝑌 direction is symmetric, decreasing 𝑟cc and increasing 𝑟db. In short, the 𝑋

displacement moves you towards the S1/S0 conical intersection, while the 𝑌 displacement
moves you from NBD to QC.

Using Fig. S9, it is clear that any dynamics which started in NBD (i.e. coming from
negative 𝑌 along the lower S1 surface) would almost certainly be split into two separate
channels which go towards the two mirror-image copies of the S1/S0 conical intersection,
and we expect minimal coupling in the dynamics. For clarity, we illustrate this with
an example trajectory, drawn as a vector. This conical intersection is also present in the
XMS-CASPT2(2,2) method, with almost identical energies and branching plane vectors.
Notably, the conical intersection is more peaked, leading to less transfer to the S2 state.

6 Location of Rydberg states

Table S3: Summary of previous active spaces applied to excited states of this molecule. The nominal
active space and basis set are given, with comments on which additional orbitals (all Rydberg) were
included over the CASSCF(4,4) method. Coppola et al.4 also performed some MS- and SS-CASPT2
calculations, and Hernandez et al.5 some XMS-CASPT2.

Work Active space Basis Differences from (4,4)
Antol6 (4,4)+3s cc-pVDZ + diffuse S Additional auxiliary 3s

Valentini et al.7 (4,8) aug-cc-pVDZ 3s and three 3p
Coppola et al.4 (4,7) ANO-L-VDZP+1s1p1d (4,3) with 3s and three 3p

Hernandez et al.5 (4,7) ANO-S-VDZP 3s, 3p𝑥 , 3p𝑦
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Figure S11: SA(8)-CASSCF(4,8)/aug-cc-pVDZ Rydberg states. Left: QC ↔ S1/S0 MECI ↔ NBD
LIIC. The important valence state (referred to as S1 elsewhere) is far higher in energy, starting as the
burgundy state at ≈ 7.5 eV above the ground state of NBD. It crosses with the doubly-excited state
and moves through the Rydberg manifold (the flat states at ≈ 4 eV) before heading to the ground
state. Right: S1/S0 MECI ↔ S1 minimum ↔ NBD LIIC. Again, the important states start extremely
high in energy. On the right half of this pathway, the geometry maintains 𝐶2𝑣 symmetry, and thus,
the singly excited state crosses diabatically with the doubly-excited state. The doubly excited state
crosses the Rydberg manifold around the S1 minimum geometry and then mixes with the singly
excited state to move closer to the intersection.

As mentioned in the main text, all previous work on this system has used Rydberg states
in the electronic structure. The Rydberg states are generally absent in applications, where
the molecules are always in the condensed phase.

When calculating Rydberg states, dynamic correlation is essential. For example,
we show SA(8)-CASSCF(4,8)/aug-cc-pVDZ, a non-dynamically correlated method very
closely related to those used in previous studies.5–7 A brief description of the methods
used in those studies is shown in Table S3. The (4,8) active space contains all of the orbitals
in the (4,4) active space used in this study and additional 3s and three 3p Rydberg orbitals.
We use the full aug-cc-pVDZ basis to ensure that all Rydberg states are equally described.

In Fig. S11, one can see that the low-lying valence state (called S1 elsewhere in this
work) is far above the Rydberg manifold, appearing first as the burgundy state at ≈ 7.5 eV
above the NBD ground state minimum, far away from the correct value should be ≈ 5.25
eV. The overall shape of this state is consistent with the CASSCF(4,4) results (e.g. in Fig.
S13), showing that the description of the valence states is unaffected by the inclusion of
the Rydberg states (a fact that also applies to the (2,2) active space). The CASSCF(4,8) thus
describes these states as poorly as CASSCF(4,4).

Further, mixed Rydberg/valence systems are not well described by CASSCF. This is
because the Rydberg states do not require as much correlation as the valence states, as the
Rydberg electron is situated far away from the other electrons. CASSCF, which is not very
correlated, therefore describes the Rydberg states better than the valence, which leads to
the excitation energies of Rydberg states being too low. In this CASSCF(4,8) method, we
have a Rydberg manifold which starts at ≈ 5.4 eV above the NBD ground state, lower than
its experimental value of closer to 6 eV.1
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The increase in energy of the valence state (caused by the poor description of the (4,4)
active space) and the relative decrease in energy of the Rydberg states (by lack of dynamic
correlation) causes the Rydberg states to sit far below the valence states, when they should
sit far above. Any dynamics on the valence states will have to traverse the Rydberg
manifold to reach the conical intersection, leading to extensive coupling into those states
and, thus, substantively different dynamics. Finally, we mention that it is also possible
to not use diffuse functions in the basis, causing the Rydberg states to artificially rise in
energy (perhaps even above the valence states). This is undesirable, as you are deliberately
describing one part of the system (the Rydberg states) poorly in order to get a favourable
outcome. Additionally, this adds a much larger amount of energy into the system, leading
to different dynamics.
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Figure S12: Potential energy cuts containing Rydberg states, for CASSCF(2,2) (solid purple) and
XMS-CASPT2(4,4) (dashed rose), both using the p-cc-(p)VDZ basis, and XMS-CASPT2(4,8) (green
dotted) using the aug-cc-pVDZ basis. Left: QC ↔ S1/S0 MECI ↔ NBD LIIC. The S1 valence state
(the lowest excited state in NBD) agrees between the (4,4) (without Rydberg) and (4,8) active spaces
in XMS-CASPT2, indicating that the Rydberg states do not significantly affect the dynamics. This
state is below the Rydberg manifold (the flat set of potentials at ≈ 5 eV). Right: S1/S0 MECI ↔
S1 minimum ↔ NBD LIIC. Again, the important S1 state is always below the Rydberg manifold,
agreeing well between the (4,4) and (4,8) active spaces.

We can correct these issues by adding correlation. In Figure S12, we show the potential
energy surfaces for both LIICs considered in this study for XMS(8)-CASPT2(4,8)/aug-cc-
pVDZ, which adds dynamic correlation onto the SA(8)-CASSCF(4,8) method, and compare
with CASSCF(2,2) and XMS-CASPT2(4,4). As can be seen, the low-lying S1 (1𝐴2) state
agrees well with all methods and is far below the Rydberg manifold, the set of flat states
centred at around 6 eV above the NBD minimum. The inclusion of Rydberg states thus does
not significantly affect the dynamics on the low-lying S1 state, as they are well separated
in energy in all important geometries, and we can safely remove them from consideration.

Although unsubstituted NBD contains Rydberg states, which are primarily excited in
experiments, there is Rydberg-free dynamics upon excitation at < 6 eV. This more closely
models the dynamics that would be seen in a practical application, where substituted
systems lower the energy of the valence states even further, completely removing all trace
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of Rydberg excitation from the system.

7 MRCI
The truncation of CI calculations leads to size-consistency errors, and a multitude of cor-
rections exist to approximate the inclusion of higher excitations.8–11 In MRCI calculations
with multiple states, these corrections are critical, as the approximate quality of a CI cal-
culation is related to the reference weight 𝑐0, the coefficient of the wavefunction included
to the reference configurations. A helpful analogy is to relate 𝑐0 to the ‘amount of work’
the MRCI calculation has to perform. A high 𝑐0 indicates that the MRCI calculation has to
compensate for less deficiency in the CASSCF wavefunction compared to lower 𝑐0 values.
As a consequence, MRCI calculations based on biased active spaces tend to remain biased.

In Fig. S13, we show the CASSCF, MRCI and MRCI+Q results for the QC ↔ S1/S0
MECI ↔ NBD LIIC for the (2,2) (left) and the (4,4) (right) active space. In the (2,2) active
space, the reference weight is relatively constant for all the states, and so the MRCI and
MRCI+Q agree closely on the shape of the potential energy surface. We also see that the
CASSCF(2,2) results are also fairly close to the MRCI results. On the other hand, the (4,4)
active space shows no signs of agreement. This is because the reference weight is much
lower for S1 than the other two states around NBD. This can also be seen in Table S2, where
the CASSCF(4,4) S1 excitation energy is far higher (7.55 eV) than the other methods. As
we include dynamic correlation with MRCI, the result improves (to 6.47 eV) but is still not
close to the experimental value of 5.25 eV. Only by including the Davidson corrections do
we get closer, moving to 5.47 eV (DV3, see later), in acceptable agreement with experiment.
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Figure S13: Left: SA(3)-CASSCF (solid, indigo) vs MRCI (dashed, rose) vs MRCI+Q (dotted, green),
with both (2,2) (left) and (4,4) right active spaces. All calculations are performed with the p-cc-
(p)VDZ basis set. For the (2,2) active space, the MRCI changes the description for S0 around the
NBD minimum, but qualitative agreement is seen elsewhere, even with the Davidson correction.
For the (4,4) active space, the three methods do not agree even qualitatively, with a notable ≈ 2 eV
increase in excitation energy in NBD. Notably, the MRCI+Q(4,4) calculations give a similar shape
to all three (2,2) active space methods. Calculations not shown for QC, where the (4,4) active space
is unstable.
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We use the terminology of the COLUMBUS program11,12 in defining the size-consistency
corrections. For clarity, we repeat them here.

DV1: 𝐸DV1 = (1 − 𝑐2
0)𝐸corr,

DV2: 𝐸DV2 =
(1 − 𝑐2

0)
𝑐2

0
𝐸corr,

DV3: 𝐸DV3 =
(1 − 𝑐2

0)
2𝑐2

0 − 1
𝐸corr,

Pople: 𝐸Pople =

√
𝑁2 + 2𝑁tan2(2𝜃) − 𝑁

2(sec(2𝜃) − 1) 𝐸corr,

where 𝑐0 is the reference weight, 𝐸corr = 𝐸MRCI − 𝐸CASSCF, 𝜃 = arccos(𝑐0), and 𝑁 is the
number of electrons. We compare DV3, DV2, and the Pople correction in Fig. S14. There
are no huge deviations in these calculations, and all corrections closely replicate the overall
shape of the potentials.
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Figure S14: MRCI+Q(4,4) Davidson corrections, calculated using the p-cc-(p)VDZ basis set. The
DV3 (solid purple) and Pople (dotted green) corrections agree excellently, while the DV2 slightly
deviates, especially on the first excited state of NBD.
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Figure S15: Multi-reference formalisms. Potential energy cuts for contracted and uncontracted
MRCI schemes, for the QC ↔ S1/S0 MECI ↔ NBD LIIC. Upper left: uc-MRCI+Q(2,2) (solid
purple) and ic-MRCI+Q(2,2) (dashed rose) potentials. Internal contraction makes no difference
to the shape of the potential energy surfaces. Upper right: uc-MRCI+Q(4,4) (solid purple) and
ic-MRCI+Q(4,4) (dashed rose) potentials. The internal contraction gives different energies from the
uncontracted calculations, especially for the states with significant |2ud0⟩ character. Lower right:
XMS-CASPT2(2,2) calculations. The contraction has a minimal effect, as seen in the equivalent
MRCI calculations. Lower right: XMS-CASPT2(4,4) calculations. A small effect is seen, but
here, it affects all states. Geometries are from MRCI(2,2)/p-cc-(p)VDZ LIIC. Calculations with
convergence/intruder state issues are not shown. (2,2) CASPT2 calculations use a real shift of 0.2
Eh, (4,4) use 0.4 Eh. All calculations use p-cc-(p)VDZ basis. ucMRCI is performed in COLUMBUS
7.6, SS-SR-XMS-CASPT2 in OpenMolcas v23.2, and icMRCI and MS-MR-XMS-CASPT2 in MOLPRO
2022.2.

The implementation of MRCI in COLUMBUS is ‘uncontracted’ (ucMRCI), which in-
cludes all single and double excitations from each determinant individually. Other MRCI
implementations, such as those in ORCA 5.0.413 and Molpro 2022.214, use a ‘internally con-
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tracted’ formalism (icMRCI), which only applies the excitation to the entire wavefunction.
This leads to fewer variational parameters and, thus, a more approximate wavefunction.
The computational saving is often large but is less obvious when dealing with smaller
active spaces, as we do here.

In this case, as shown in Fig. S15 (upper two panels), the difference is dependent on
the active space. For the (2,2) active space, the uncontracted formalism gives effectively
identical curves. For the (4,4) active space, the difference is much larger. Interestingly, this
difference is specific to the second state, only affecting the state with large |2ud0⟩ character
around NBD. This might be rationalised as a consequence of the poor description of the
second state - the icMRCI method, which excites from the reference wavefunction, does
not have the full flexibility needed to describe the final state. The (2,2) active space, which
gives a more equal description of the state, gives little qualitative different between the
two contraction schemes.

It should be noted that a similar problem exists in CASPT2. The split is between the
‘multi-state multi-reference’ (MS-MR), referring to a formalism which calculates all states
together, and ‘single-state single-reference’ (SS-SR), a formalism which combines all of the
states separately after calculation (which decreases computational time). Previous work
has shown that these approximations are less important than they are in MRCI.15 We show
the results for the different approximations in Fig. S15 (lower panels). In XMS-CASPT2(2,2),
the effect of contraction has a far less obvious effect, while there is at least a small difference
in XMS-CASPT2(4,4), in line with the results of MRCI. The SS-SR calculations come from
the OpenMolcas program (as used throughout), while the MS-MR calculations come from
Molpro. As the imaginary shift used previously is not implemented in Molpro, a real shift
is used (0.2 Eh for the (2,2) active space, 0.4 Eh for the (4,4)). The real shift is known to cause
its own issues with intruder states, and this is seen around the ground state minimum of
QC, which is not shown on the figure.

8 SHCI and LR-CCSD
In the main text, we compare our multi-configurational methods with LR-CC3, a very
high-level method for calculating excitation energies from a coupled-cluster wavefunction.
Here, we show two more non-active space methods: SHCI, which is a variant of selected
configuration interaction, and LR-CCSD, which which calculates the excitation energies
from a CCSD ground state.

Selected configuration interaction (CI) methods approximate full CI by attempting to
include only important configurations in the expansion. Unlike traditional truncated CI,
such as CISD, they do limit the degree of excitation, but rather include configurations
based on an importance criterion, effectively ignoring determinants that do not contribute
significantly. The most important advantage is their lack of human bias; they do not
require the selection of an active space and generally provide a comparatively even-handed
description of all electronic states considered. While many flavours of selected CI exist,
we use heat-bath CI (HCI),16 which is known to be computationally efficient. We perform
the calculations in a large active space that consists of 20 electrons in 80 orbitals since
all-electron calculations are not feasible. This active space is chosen to ensure that all
low-energy orbitals are included. Furthermore, the contribution from determinants not
selected is estimated using a stochastic perturbation theory.16

We only calculate the ground and first excited (|2ud0⟩) states using SHCI. As seen in
Fig. S16, the SHCI results agree well with MRCI+Q(4,4), confirming that the active space
procedure is reasonably unbiased. It is worth noting that as well as providing an unbiased
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Figure S16: SHCI(2,2) (solid, purple) vs XMS-CASPT2(2,2) (dashed, rose) vs MRCI+Q(4,4) (dotted,
green) calculations, all for p-cc-(p)VDZ basis. The agreement is strong across all geometries, with
only a small deviation in excitation energies. All calculations on MRCI geometries (see Methods).

reference, the selected CI methods are also interesting candidates for ’black-box’ electronic
structure methods for dynamics, with a good mixture of static and dynamic correlation
and relatively straightforward gradient and non-adiabatic coupling implementations.17

Currently, their usage is limited by their computational costs, but ongoing improvements
in theory and algorithms could make them ubiquitous.

Finally, we show LR-CCSD.18,19 Unfortunately, LR-CCSD is limited to only describing
singly-excited states well — this system, which contains important doubly-excited states,
is not well described by it. This can be seen in Fig. S17, which shows the LR-CCSD with
a notably steep gradient around the intersection in both LIICs. Other single-reference
correlated excited state methods (e.g. ADC(2) and CC2) only give worse results, as the
double excitation crucial to the description is included at an even lower level, if at all.
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Figure S17: Potential energy cuts for LR-CCSD, contrasted against the CASSCF(2,2) and XMS-
CASPT2(4,4). Left: QC ↔ S1/S0 MECI ↔ NBD LIIC. The LR-CCSD agrees very well with the
CASSCF(2,2), but shows a slightly different shape to the XMS-CASPT2(4,4) on the excited state.
Notably, the gradients around the MECI are slightly too steep. Right: S1/S0 MECI ↔ S1 minimum
↔ NBD LIIC. Again, the LR-CCSD agrees fairly well with CASSCF(2,2) and XMS-CASPT2(4,4).

As a final check, we show the LR-CCSD calculations performed with our p-cc-(p)VDZ
basis and the larger aug-cc-pVTZ basis in Fig. S18. We do this primarily to show that
our new contraction, p-cc-(p)VDZ, is close to convergence, as coupled cluster methods are
notorious for needing large basis sets to get good agreement. The shape of the potentials
is consistent between the two methods, implying that our basis is appropriate. These
calculations were not feasible for LR-CC3, but we assume the trend is approximately
continued, and we can trust that the current potentials are close to correct.
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Figure S18: Basis sets for LR-CCSD, using the S1/S0 MECI ↔ S1 minimum ↔ NBD LIIC, the
overall agreement between the p-cc-(p)VDZ and aug-cc-pVTZ basis sets is good, indicating that
the p-cc-(p)VDZ is at least somewhat converged.

8.1 Computational details for SHCI
Stochastic heat bath configuration interaction (SHCI) calculates were performed using
the PySCF20/DICE16,21–23 interface. The SHCI used the pseudo-canonical orbitals from
SA(3)-CASSCF(2,2) calculations to ensure that orbitals are smooth along the LIICs, and
then performs the SHCI within a (20,80) active space. Expanding the active space is not
computationally feasible for the entire pathways but gave similar relative energy gaps
at test points. The variational portion was converged to 𝜖1 = 10−4, and the stochastic
perturbative correction used 30 samples of 200 variationally chosen configurations, with
𝜖2 = 10−7. The stochastic portion gave errors of less than 5 × 10−4 Eh ≈ 0.01 eV, which
suffices for comparison — note, this is not the error with respect to FCI, but the error in the
stochastic sampling. SHCI calculations for the QC↔S1/S0 MECI↔NBD were performed
simultaneously for three states, with the second (triplet) solution discarded, while calcu-
lations for the S1/S0 MECI↔S1 min.↔NBD were performed with time-reversal symmetry
to remove the triplet state.

9 Other multi-reference methods
There are many ways to add correlation to a CASSCF calculation. We utilised MRCI and
XMS-CASPT2, but here we show additional calculations performed using MS-CASPT2,
QD-NEVPT2 and XMC-QDPT2 (three different flavours of quasi-degenerate multi-reference
perturbation theory). We compare it to XMS-CASPT2(2,2), which gave good agreement
to the MRCI+Q(4,4) calculations. The vertical excitation values are shown in Table S2,
where QD-NEVPT2 and XMC-QDPT2 show very similar values to XMS-CASPT2 with the
(2,2) active space. MS-CASPT2, on the other hand, shows a remarkably low S1 vertical
excitation energy of 4.85 eV. These trends are continued in Fig. S19, with QD-NEVPT2
and XMC-QDPT2 both showing exceptional agreement. MS-CASPT2, on the other hand,
is remarkably lower across the potential. Similar values are also seen in the results of
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Coppola et al.,4 as well as our own previous work.24 We noticed that the agreement of
MS-CASPT2 improved when including the IPEA shift with its standard value of 0.25 Eh.

All calculations in Fig. S19 use the p-cc-(p)VDZ basis and the (2,2) active space. The
QD-FIC-NEVPT2 calculations were performed using the ORCA 5.0.4 program.13 XMC-
QDPT2(2,2) calculations were performed in Firefly.25 Some minor deviations are seen
around the NBD, but this is likely to do with both the different implementations of the
level-shift (0.2𝑖 in XMS-CASPT2 vs. ISA=0.02 in XMC-QDPT2). MS-CASPT2 calculations
were performed in OpenMolcas.26
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Figure S19: Potential energy curves for XMS-CASPT2 (purple solid), MS-CASPT2 (rose
dashed), QD-NEVPT2 (green dotted), XMC-QDPT2 (sand dashdot lines), all based on a SA(3)-
CASSCF(2,2)/p-cc-(p)VDZ reference. The QD-NEVPT2, XMC-QDPT2 and XMS-CASPT2 agree
well, with only a small and roughly constant energy difference between the two curves. The MS-
CASPT2, on the other hand, seems to get the overall shape of the potential energy surface wrong,
at least compared to XMS-CASPT2, which compares favourably with the MRCI+Q(4,4).

Finally, in Fig. S20, we show the potential energy cuts using different values of the
imaginary shift. Clearly, the value of the shift affects the energy of the S2 state around the
NBD minimum (vertical excitation energies can be found in Table S2). In general, a lower
shift gives a lower excitation energy of S2. Unfortunately, upon using a 0.1𝑖 shift, we found
minor issues with intruder states. Therefore, we use 0.2𝑖 for the rest of the work as an
acceptable compromise between accuracy and stability.
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Figure S20: Potential energy cuts for XMS-CASPT2(2,2) with different shift values, all using p-cc-
(p)VDZ basis. As the shift decreases, the slope of the doubly excited S2 |2020⟩ state around NBD
gets slightly shifted. All calculations in the text use a value of 0.2𝑖.

10 Basis sets
For clarity, we include a table of the basis set primitives and contractions in Table S4. The
validity of this basis set can be seen by comparison to the ANO-L-VQZP basis. The ANO-L
basis has a particularly large set of primitive functions, and the truncation at quadruple-
zeta-plus-polarisation leads to fantastic energies and properties. A similar effect can
be seen in the earlier comparison for LR-CCSD, shown in Fig. S18 and the associated
discussion.

First, we can look at the potential energy surfaces in both CASSCF and XMS-CASPT2 in
Fig. S21. The potential cuts show excellent agreement between the two methods, especially
in the correlated XMS-CASPT2 calculations. Furthermore, we show the conical intersection
parameters shown in Table S5, which mimics Table 2 in the main text. The basis set change
gives minor changes to both the structure and the potential energy surface around the
intersection, but overall the methods are well converged. Finally, the structures of the
ground state minima (see Table S1) show close agreement, and further good agreement to
a previous study using large basis sets MP2 calculations.

The primary difference between the descriptions for different basis sets is caused by
the diffuse nature of the states, which is evident from the radial second moment of the
charge for each state, given as ⟨𝑟2⟩ = ⟨𝑥2⟩ + ⟨𝑦2⟩ + ⟨𝑧2⟩. Here, the integration is performed
over both the electrons and the nuclei to cancel out effects due to the geometry change. In
Fig. S22, the diffuseness, which increases going up the 𝑦-axis, for the two excited states
can be seen to increase significantly around the QC ground state minimum. Here, the
orbital characters change such that the B1 (see Fig. S1) orbital gains considerable Rydberg
character. S2, which is a state of |2200⟩ character, is therefore even more diffuse. A smaller
(but similar) effect can be seen around the NBD minimum. Incorrectly dealing with this
diffuseness (e.g. by using an insufficiently diffuse basis) leads to a severe overestimation of
excitation energies into these states, as seen in Fig. S21.
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Table S4: Primitives and contractions for the p-cc-(p)VDZ basis set. This is a effectively a pruned
aug-cc-pVDZ basis set, removing all diffuse and polarisation functions off of hydrogen atoms (a
[4s|2p] contraction), and the S and D angular momentum diffuse functions off of carbon atoms (a
[9s5p1d|3s3p1d] contraction). Zero values are not shown.

Atom Ang. mom. Primitives Contractions
H S 13.01 0.019685

1.962 0.137977
0.4446 0.478148
0.122 0.50124 1

C S 6665 0.000692 -0.000146
1000 0.005329 -0.001154
228 0.027077 -0.005725

64.71 0.101718 -0.023312
21.06 0.27474 -0.063955
7.495 0.448564 -0.149981
2.797 0.285074 -0.127262

0.5215 0.015204 0.544529
0.1596 -0.003191 0.580496 1

P 9.439 0.038109
2.002 0.20948

0.5456 0.508557
0.1517 0.468842 1

0.04041 1
D 0.55 1
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Figure S21: Potential energy cuts calculated using p-cc-(p)VDZ basis (solid rose) vs ANO-L-VQZP
(dashed green) for SA(3)-CASSCF(2,2) (left) and XMS-CASPT2 (right). CASSCF calculations per-
formed on CASSCF geometries, and CASPT2 calculations on MRCI geometries.
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Table S5: Conical intersection parameters. 𝑃 and 𝐵 parameters and carbon-carbon distances (in
Ångströms for optimised S1/S0 MECI for the (2,2) active space for SA(3)-CASSCF, XMS-CASPT2
(with 0.2𝑖 shift), for the p-cc-(p)VDZ and ANO-L-VTZp basis set (ANO-L-VTZP on the carbons and
ANO-L-VTZ on the hydrogens). The conical intersections all have a 𝐶2 optimised geometry.

Basis set Method 𝑃 𝐵 𝑟cc 𝑟db 𝑟rh

p-cc-(p)VDZ CASSCF 0.789 0.857 1.943 1.443 0.499
XMS-CASPT2 0.560 1.168 2.011 1.490 0.555

ANO-L-VTZ(p) CASSCF 0.768 0.834 1.937 1.435 0.484
XMS-CASPT2 0.511 1.082 1.996 1.474 0.530
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Figure S22: −⟨𝑟2⟩ for three analysed states SA(3)-CASSCF(2,2)/p-cc-(p)VDZ calculations. Values
increasing indicate increasing electronic diffuseness. The ⟨𝑟2⟩ values significantly increase for the
two excited states around the QC ground state minimum. At the conical intersection, the states
change character, leading to discontinuities in the curves.
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11 Nature of the potential energy surfaces

Figure S23: Annotated potential energy cut for the QC ↔ S1/S0 MECI ↔ NBD LIIC using XMS-
CASPT2(2,2). The character labels use the orbital labelling from Fig. 2 (main text) and S1. Close to
the intersection, S1 gains double excitation character. All other methods except CASSCF(4,4) show
good agreement in the character of the states.

In Fig. S23, we show the XMS-CASPT2(2,2) potential energy surfaces with labels of ap-
proximate character. All other methods studied except CASSCF(4,4) show very similar
characters. Near the conical intersection, S1 and S2 become mixed in character, with S1
gaining double excitation character, with the region very close involving all three important
configurations.
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Figure S24: Fraction of single excitations (T1) for the S1 LR-CC3 and LR-CCSD wavefunctions. Left:
QC↔ S1/S0 MECI↔NBD LIIC. The singly-excited character drops around the conical intersection,
but much more noticeably for LR-CC3 than LR-CCSD. This spike at the conical intersection indicates
the poor description. Right: S1/S0 MECI ↔ S1 minimum ↔ NBD LIIC. Again, the doubly-excited
character is highest at the conical intersection. Points not shown for the S1/S0 MECI, as the LR-CC
wavefunction shows convergence issues.

As mentioned, the S1 state gains double excitation character around the S1/S0 conical
intersection. We use the fraction of single excitations (T1), the sum of all singly-excited
amplitudes. Lower values indicate more doubly-excited character.27,28. This provides a
good estimate of the doubly-excited character of the system. We show this using LR-CC3
and LR-CCSD S1 states, shown in Fig. S24. As is clear, the doubly-excited character is very
high around conical intersection. Notably, the LR-CCSD values are higher than the LR-
CC3 values, in accordance with the poor description seen in Section 8. More approximate
methods, such as LR-CC2 and ADC(2), would give even worse descriptions.
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Figure S25: Potential energy cuts for the (2,2) (purple solid) and (4,3) (rose dashed) active space
for the QC ↔ S1/S0 MECI ↔ NBD LIIC. Left: CASSCF. Right: XMS-CASPT2. The agreement is
strong across the pathway, except for presence of the 11𝐵2 in the (4,3) active state. For dynamics on
the lower 11𝐴2 (S1) state, this state is not important.

12 Summary of Calculations

Table S6: Summary of methods evaluated in this study. In order, the columns indicated: the active
space, whether they are stable in the QC geometry, whether they can be used in a dynamics simu-
lation, whether their S1/S0 CI has bifurcating character and whether they show a local minimum
on the S1 surface. N/A indicates that the calculation has not been performed.

Method (𝑚, 𝑛) Stable in QC? Dynamics? Bifurcating? S1 min.?
CASSCF (2,2) Yes Yes Yes Yes

(4,4) No Yes Yes Yes
XMS-CASPT2 (2,2) Yes Yes No No

(4,4) No Yes Yes Yes
MRCI (2,2) Yes Yes No Yes

(4,4) No Yes Yes No
MRCI+Q (2,2) Yes No N/A Yes

(4,4) No No N/A Yes
LR-CC3 HF Yes No N/A Yes
LR-CCSD HF Yes No N/A Yes
SHCI (20,80) Yes Yes N/A Yes

13 CASSCF(4,3)
In addition to the CASSCF(2,2) and CASSCF(4,4), there exists an alternative choice:
CASSCF(4,3). Using the nomenclature of Fig. 2 (and Fig. S1), this includes the 𝐴1, 𝐵1,
and 𝐵2 orbitals. In addition, we state average over four states, giving SA(4)-CASSCF(4,3),
adding an additional valence state: the 11𝐵2 state, which can be observed spectroscopically
above the 11𝐴2 state1,29.
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All of the critical geometries in this paper have at least 𝐶2 symmetry, with some being
in the 𝐶2𝑣 sub-group, and all states considered belong to the 𝐴 irreducible representation
(irrep). When adding the 𝐴1 orbital to form the (4,3) active space, we only add one
additional configuration in the 𝐴 irrep, namely the |0220⟩ configuration. In 𝐶2𝑣 geometries,
this is 𝐴1 and contributes to the two 𝐴1 states S0 and S2, primarily the latter. This does
not significantly affect to the wavefunction, and the presence of the 𝐴1 orbital can lead to
instability around QC geometries, where it lowers significantly in energy.

As such, the CASSCF excitation energies (Table S2), optimised geometries (Table S1)
and overall potential energy surfaces (Fig. S25, left panel) are incredibly similar between
the methods, as well as the qualitative features of the potential. The XMS-CASPT2 results,
shown as above, share the same similarity. We also mention, finally, that as the CASSCF(4,3)
wavefunction is state-averaged over four states, the two states studied here, S0 and S1, have
a lower weight in the wavefunction, which may negatively affect their description.

However, this symmetry-based analysis is only valid within symmetric geometries
of the unsubstituted (or symmetrically substituted) variants of the QC/NBD system. It
is plausible that the additional orbitals could lead to better results in asymmetrically
substituted variants or non-symmetric geometries, where contribution of the additional
orbital is no longer symmetry forbidden. In addition, the (4,3) allows for the calculation
of the 11𝐵2 state, which could be useful for ultrafast experiments with excitation energies
of ≈ 6 eV.

14 Important geometries

C -0.00623762 0.00112809 -0.01783509
C 2.46952702 0.00113714 -0.01782721
C -0.00623241 0.00112590 -1.34758024
C 2.46953222 0.00113360 -1.34756813
C 1.23163817 0.79689777 0.43333960
C 1.23165004 0.79689305 -1.79874838
C 1.23164036 1.87320553 -0.68270700
H -0.69996623 -0.50029786 0.64449358
H 3.16324837 -0.50028992 0.64450757
H -0.69995108 -0.50030785 -2.00991290
H 3.16326333 -0.50029138 -2.00989473
H 1.23163506 1.13729348 1.46891791
H 1.23165407 1.13728394 -2.83432830
H 0.33495108 2.49860759 -0.68271213
H 2.12832761 2.49861092 -0.68270456

Table S7: NBD S0 geometry optimised at CASSCF(2,2)/p-cc-(p)VDZ level. Distances in Ångströms
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C -0.01145559 0.01158941 -0.01135907
C 1.53739527 0.01158779 -0.01135237
C -0.01145467 0.01155994 -1.54175823
C 1.53740665 0.01158450 -1.54174779
C 0.76297273 1.25126614 0.36989437
C 0.76295163 1.25123727 -1.92302270
C 0.76296521 2.24291674 -0.77657493
H -0.71360035 -0.49523713 0.63679114
H 2.23950681 -0.49526863 0.63680775
H -0.71360322 -0.49528638 -2.18989435
H 2.23952093 -0.49528504 -2.18988826
H 0.76297739 1.57342865 1.40570641
H 0.76297060 1.57337379 -2.95884322
H -0.12694439 2.88241733 -0.77657997
H 1.65289101 2.88239562 -0.77659876

Table S8: QC S0 geometry optimised at CASSCF(2,2)/p-cc-(p)VDZ level. Distances in Ångströms

C 0.06659730 -0.02880259 -0.02563437
C 2.00952085 0.00421747 -0.01385623
C 0.38714943 0.00324735 -1.43196211
C 2.31906961 0.21014800 -1.40784916
C 1.07367793 1.00658507 0.49581788
C 1.18685157 1.17562053 -1.78739361
C 1.06672984 2.10636002 -0.57377451
H -0.20016431 -0.93137068 0.50395810
H 2.41088169 -0.78642470 0.60695968
H 0.08153018 -0.73587112 -2.16128877
H 2.69126986 -0.56875204 -2.05671580
H 1.05710172 1.25334693 1.55126345
H 1.16341457 1.56844681 -2.79747720
H 0.13354623 2.67323379 -0.55901404
H 1.92221352 2.78102518 -0.50047330

Table S9: S1/S0 MECI geometry optimised at CASSCF(2,2)/p-cc-(p)VDZ level. Distances in
Ångströms

29



C 0.17298688 -0.02618520 0.02288223
C 2.29030187 -0.02617869 0.02289329
C 0.17299268 -0.02618849 -1.38829861
C 2.29030760 -0.02618168 -1.38828755
C 1.23163931 0.95165983 0.45363687
C 1.23164898 0.95165483 -1.81904650
C 1.23164094 1.99160838 -0.68270709
H -0.35088109 -0.71008531 0.67492913
H 2.81416716 -0.71007700 0.67494457
H -0.35086835 -0.71009296 -2.04034685
H 2.81417978 -0.71008144 -2.04033145
H 1.23163367 1.28026360 1.48865171
H 1.23165256 1.28025404 -2.85406278
H 0.33518152 2.61587726 -0.68271194
H 2.12809647 2.61588283 -0.68270504

Table S10: S1 minimum geometry optimised at CASSCF(2,2)/p-cc-(p)VDZ level. Distances in
Ångströms

C -0.005267 0.005148 -0.013416
C 2.468636 0.005136 -0.013417
C -0.005319 0.005169 -1.351998
C 2.468705 0.005157 -1.351966
C 1.231578 0.801709 0.436135
C 1.231592 0.801714 -1.801534
C 1.231671 1.877629 -0.682714
H -0.698233 -0.503522 0.654364
H 3.161583 -0.503609 0.654335
H -0.698269 -0.503486 -2.019780
H 3.161652 -0.503574 -2.019704
H 1.231427 1.145650 1.476688
H 1.231455 1.145545 -2.842151
H 0.328863 2.504368 -0.682730
H 2.134465 2.504341 -0.682718

Table S11: NBD S0 geometry optimised at MRCI(2,2)/p-cc-(p)VDZ level. Distances in Ångströms
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C -0.003622 0.010827 -0.007716
C 1.531534 0.011746 -0.007673
C -0.003609 0.010794 -1.545401
C 1.531543 0.011762 -1.545406
C 0.763251 1.261201 0.371409
C 0.763256 1.261178 -1.924555
C 0.762701 2.249651 -0.776582
H -0.702141 -0.506174 0.646330
H 2.231175 -0.504045 0.646067
H -0.702286 -0.506115 -2.199341
H 2.231015 -0.504158 -2.199235
H 0.762730 1.583453 1.412934
H 0.763126 1.583402 -2.966090
H -0.133219 2.890123 -0.776586
H 1.657823 2.891231 -0.776592

Table S12: QC S0 geometry optimised at MRCI(2,2)/p-cc-(p)VDZ level. Distances in Ångströms

C 0.057015 -0.020780 -0.030176
C 2.011637 0.010059 0.000095
C 0.383132 0.010877 -1.445441
C 2.326778 0.218583 -1.402547
C 1.055737 1.013460 0.496668
C 1.202942 1.184792 -1.787452
C 1.065984 2.112571 -0.573453
H -0.204369 -0.930047 0.503658
H 2.412487 -0.784986 0.627622
H 0.078165 -0.731305 -2.182146
H 2.694483 -0.566871 -2.056722
H 1.029029 1.267554 1.556603
H 1.188653 1.586820 -2.800812
H 0.127634 2.683228 -0.573734
H 1.926344 2.789366 -0.484636

Table S13: S1/S0 MECI geometry optimised at MRCI(2,2)/p-cc-(p)VDZ level. Distances in
Ångströms
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