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S0.1 Dataset and Preprocessing

The collection process yielded information on 170 compositions from NASI-
CONs, with entries containing mobile alkali ions Na and Li. This amount of
dataset meets the guideline that the training data should be approximately
�ve times greater than the number of descriptors [1], in order to prevent the
'curse of dimensionality' or over�tting [2]. Signi�cantly, the dataset comprises
a combination of low and high ionic conductivity ranging from 10−3 to 10−12

S/cm. This diversity of data will enhance the reliability of the machine learning
models [1]. Due to the limited size of the training dataset and the potential
interference of experimental noise, classi�cation was selected as the preferred
approach for studying ionic conductivities rather than predicting speci�c val-
ues. This method e�ectively addresses issues related to noise and over�tting by
using decision boundaries to establish multiple classes, allowing the grouping
of several orders of magnitudes. Therefore, it is an e�ective screening method.
The dataset containing formulas and corresponding ionic conductivities for NA-
SICON materials is listed in Table S1.

Table S1: List of NASICON compounds with ionic conductivity at
25 0C.

Formula Ionic Conductivity Reference

NaZr2(PO4)3 4.50E-06 [5]
NaSn0.5Zr1.5(PO4)3 4.23E-11 [5]
NaSnZr(PO4)3 2.47E-10 [5]

NaSn1.5Zr0.5(PO4)3 7.91E-10 [5]
NaNbZr(PO4)3 2.49E-08 [5]
NaMoZr(PO4)3 2.06E-09 [5]
NaMoTi(PO4)3 3.07E-07 [5]

Na3Zr2(SiO4)2(PO4) 6.70E-04 [7]
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Na4Zr2(SiO4)3 8.87E-09 [5]
Na1.2In0.2Zr1.8(PO4)3 2.08E-07 [8]
Na1.4In0.4Zr1.6(PO4)3 9.76E-07 [8]
Na1.5Al0.5Zr1.5(PO4)3 5.70E-06 [9]
Na1.5Cr0.5Zr1.5(PO4)3 1.00E-05 [9]
Na1.5Ga0.5Zr1.5(PO4)3 3.40E-06 [9]
Na1.5In0.5Zr1.5(PO4)3 2.90E-05 [9]
Na1.5Sc0.5Zr1.5(PO4)3 5.80E-05 [9]
Na1.5Y0.5Zr1.5(PO4)3 5.60E-05 [9]
Na1.5Yb0.5Zr1.5(PO4)3 3.00E-05 [9]

Na2AlZr(PO4)3 1.20E-06 [9]
Na2CrZr(PO4)3 2.50E-05 [9]

Na2.5Sc0.2Zr1.8(SiO4)1.3(PO4)1.7 3.19E-04 [10]
Na3Sc1.5Zr0.5(SiO4)0.5(PO4)2.5 1.17E-04 [10]

Na3ScZr(SiO4)2(PO4) 1.82E-04 [10]
Na3Sc0.8Zr1.2(SiO4)1.2(PO4)1.8 1.42E-04 [10]
Na3.5Sc0.5Zr1.5(SiO4)2(PO4) 4.88E-04 [10]

Na2.7Sc0.2Zr1.8(SiO4)1.5(PO4)1.5 8.87E-05 [10]
Na1.3Al0.3Zr1.7(PO4)3 6.30E-05 [11]

Na3MgZr(PO4)3 1.00E-06 [12]
Na3MnZr(PO4)3 1.80E-06 [12]

Na2.0Mg0.5Zr1.5(PO4)3 9.60E-06 [13]
Na2.4Mg0.7Zr1.3(PO4)3 1.40E-05 [13]
Na1.5Nb0.3Zr1.5(PO4)3 6.20E-07 [5]
Na1.8Yb0.8Zr1.2(PO4)3 1.58E-03 [14]

LiZr2(PO4)3 1.00E-05 [9]
Li1.2Zr1.8Ca0.2(PO4)3 1.30E-05 [15]
Li1.4Zr1.6Ca0.4(PO4)3 8.50E-06 [15]
Na1.2Zr1.8Fe0.2(PO4)3 2.54E-06 [16]
Na2In1.0Zr1.0(PO4)3 3.16E-04 [14]
Na2YbZr1.0(PO4)3 3.55E-03 [14]
Na2Mg0.5Zr1.5(PO4) 3.98E-04 [17]
Na3Mg1.0Zr1.0(PO4)3 1.58E-03 [17]
LiZr1.9Sr0.1(PO4)3 3.44E-05 [18]
LiZr1.8Sr0.2(PO4)3 1.42E-05 [18]
Li2ZrFe(PO4)3 1.14E-08 [28]
Li2ZrIn(PO4)3 8.22E-08 [19]

Li1.1Zr1.9Y0.1(PO4)3 8.90E-03 [20]
Li1.15Zr1.85Y0.15(PO4)3 7.00E-03 [20]
Na3Zr2(SiO4)2(PO4) 6.70E-04 [21]
Na3.1Sc0.1Zr1.9Si2PO12 1.32E-03 [21]
Na3.2Sc0.2Zr1.8Si2PO12 1.90E-03 [21]
Na3.3Sc0.3Zr1.7Si2PO12 2.80E-03 [21]
Na3.4Sc0.4Zr1.6Si2PO12 4.00E-03 [21]
Na3.5Sc0.5Zr1.5Si2PO12 3.80E-03 [21]
Na3.6Sc0.6Zr1.4Si2PO12 1.75E-03 [21]

Na3.05La0.05Zr1.95Si2PO12 9.60E-04 [22]
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Na3.10La0.1Zr1.9Si2PO12 1.30E-03 [22]
Na3.15La0.15Zr1.85Si2PO12 1.50E-03 [22]
Na3.2La0.2Zr1.8Si2PO12 1.80E-03 [22]

Na3.25La0.25Zr1.75Si2PO12 3.20E-03 [22]
Na3.3La0.3Zr1.7Si2PO12 3.40E-03 [22]

Na3.35La0.35Zr1.65Si2PO12 2.00E-03 [22]
Na3.4La0.4Zr1.6Si2PO12 1.30E-03 [22]
Na3Zr1.9Nb0.08Si2PO12 2.06E-04 [6]
Na3Zr1.7Nb0.24Si2PO12 2.26E-04 [6]
Na3Zr1.5Nb0.40Si2PO12 1.20E-04 [6]
Na3Zr1.3Nb0.56Si2PO12 3.31E-05 [6]
Na3Zr1.2Nb0.8Si2PO12 3.31E-05 [6]
Na1.4Zr1.8Mg0.2P3O12 6.90E-06 [13]
Na1.8Zr1.6Mg0.4P3O12 8.90E-06 [13]
Na2.4Zr1.3Mg0.7P3O12 9.60E-06 [13]
Na2.8Zr1.1Mg0.9P3O12 1.40E-05 [13]
Na2.2In1.2Zr0.8(PO4)3 2.63E-06 [5]
Na2.5Cr1.5Zr0.5(PO4)3 1.80E-04 [9]
Na2.5In1.5Zr0.5(PO4)3 1.00E-04 [9]
Na2.5Sc1.5Zr0.5(PO4)3 5.60E-04 [9]
Na2.5Y1.5Zr0.5(PO4)3 4.60E-05 [5]
Na2.5Yb1.5Zr0.5(PO4)3 1.90E-04 [9]
Na2.6In1.6Zr0.4(PO4)3 2.81E-06 [8]
Na2.8In1.8Zr0.2(PO4)3 2.38E-06 [8]

NaGe2(PO4)3 1.10E-12 [5]
NaGeTi(PO4)3 8.50E-12 [5]

Na1.4Al0.4Ge1.6(PO4)3 7.28E-10 [23]
NaTi0.5Ge1.5(PO4)3 3.13E-11 [9]

Na1.25Sn0.25Ge1.75(PO4)3 7.00E-06 [24]
Na1.5Sn0.5Ge1.5(PO4)3 8.39E-05 [24]

Na1.75Sn0.75Ge1.25(PO4)3 1.20E-05 [24]
Li1.5Al0.5Ge1.5(PO4)3 4.00E-04 [25]

Li1Ge2(PO4)3 8.00E-08 [26]
Li1.5Al0.5Ge1.5(PO4)3 1.00E-04 [26]

NaTi2(PO4)3 4.43E-10 [5]
NaGe0.5Ti1.5(PO4)3 5.91E-13 [5]
NaSn0.5Ti1.5(PO4)3 1.77E-11 [5]
NaSnTi(PO4)3 6.86E-11 [5]

NaSn1.5Ti0.5(PO4)3 5.14E-10 [5]
NaNbTi(PO4)3 1.59E-06 [5]

Na1.4Al0.4Ti1.6(PO4)3 5.60E-08 [5]
Na1.6Al0.6Ti1.4(PO4)3 1.10E-07 [5]
Na1.8Al0.8Ti1.2(PO4)3 1.20E-07 [5]
Na1.9Al0.9Ti1.1(PO4)3 1.30E-07 [5]
Na1.4In0.4Ti1.6(PO4)3 1.86E-08 [5]
Na1.3Al0.3Ti1.7(PO4)3 1.40E-05 [11]

LiTi2(PO4)3 3.60E-08 [27]
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Li2TiFe(PO4)3 3.34E-07 [28]
Li1.3Al0.3Ti1.7(PO4)3 7.00E-04 [29]
Li1.3Sc0.3Ti1.7(PO4)3 7.00E-04 [29]
Li1.2Al0.2Ti1.8(PO4)3 3.16E-03 [30]
Li1.5Al0.5Ti1.5(PO4)3 4.70E-03 [30]
Li1.3Cr0.3Ti1.7(PO4)3 1.99E-05 [31]
Li1.7Cr1.7Ti1.3(PO4)3 6.31E-05 [31]

NaHf2(PO4)3 8.77E-10 [27]
Na2.4Hf2(SiO4)1.4(PO4)1.6 7.30E-04 [32]
Na2.6Hf2(SiO4)1.6(PO4)1.4 5.90E-04 [32]
Na2.8Hf2(SiO4)1.8(PO4)1.2 6.90E-04 [32]

Na3Hf2(SiO4)2(PO4) 1.10E-03 [32]
Na3.2Hf2(SiO4)2.2(PO4)0.8 2.30E-03 [32]
Na3.4Hf2(SiO4)2.4(PO4)0.6 1.40E-03 [32]
Na3.6Hf2(SiO4)2.6(PO4)0.4 1.20E-03 [32]
Na3.8Hf2(SiO4)2.8(PO4)0.2 3.20E-04 [32]
Na1.4In0.4Hf1.6(PO4)3 1.86E-07 [32]

LiHf2(PO4)3 6.31E-07 [33]
Li1.1Cr0.1Hf1.9(PO4)3 3.80E-04 [35]
Li1.2Fe0.2HF1.8 (PO4)3 1.58E-04 [33]
Li1.2Cr0.2HF1.8 (PO4)3 1.00E-04 [33]
Li1.2Sc0.2HF1.8 (PO4)3 2.00E-05 [33]
Li1.2In0.2HF1.8 (PO4)3 1.26E-04 [33]
Li1.2Lu0.2HF1.8 (PO4)3 1.00E-04 [33]
Li1.2Y0.2HF1.8 (PO4)3 3.16E-05 [33]
Li1.4Fe0.4HF1.6 (PO4)3 2.00E-05 [33]
Li1.4Sc0.4HF1.6 (PO4)3 1.00E-04 [33]
Li1.4In0.4HF1.6 (PO4)3 1.41E-04 [33]
Li1.4Lu0.4HF1.6 (PO4)3 2.00E-05 [33]
Li1.4Y0.4HF1.6 (PO4)3 2.00E-05 [33]

Na1.6Al0.2Hf1.8Si0.4P2.6O12 4.33E-05 [34]
Na2.2Al0.4Hf1.6Si0.8P2.2O12 1.06E-04 [34]
Na2.8Al0.6Hf1.4Si1.2P1.8O12 5.85E-04 [34]
Na3.4Al0.8Hf1.2Si1.6P1.4O12 2.11E-04 [34]
Na4.0Al1.0Hf1.0Si2.0P1.0O12 1.92E-04 [34]
Na4.6Al1.2Hf0.8Si2.4P0.6O12 1.30E-04 [34]

NaSn2(PO4)3 4.65E-09 [5]
Na3Cr2(PO4)3 1.70E-07 [5]
Na3Fe2(PO4)3 1.20E-07 [5]
Na3Sc2(PO4)3 2.27E-05 [5]

Na1.4Al0.4Sn1.6(PO4)3 1.41E-08 [5]
Na1.4In0.4Sn1.6(PO4)3 2.72E-08 [5]

Na3V2(PO4)3 3.00E-08 [36]
Na3V1.9Fe0.1(PO4)3 2.00E-06 [36]
Na3V1.9Al0.1(PO4)3 1.00E-07 [36]
Na3.1V1.9Ni0.1(PO4)3 1.20E-06 [36]
Na3V1.9Cr0.1(PO4)3 4.00E-08 [36]
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Na3.4Sc2(SiO4)0.4(PO4)2.6 4.00E-03
Na3.4Mg0.4Cr1.6(PO4)3 1.58E-02

Na3.65Mg0.65Cr1.35(PO4)3 6.31E-03
LiCrTa(PO4)3 6.20E-06
Li3Cr2(PO4)3 2.50E-08

Na3.1Zr1.95Mg0.05Si2PO12 3.5E-03 [37]
Na3.1Zr1.95Ca0.05Si2PO12 2.1E-03 [37]
Na3.1Zr1.95Sr0.05Si2PO12 1.8E-03 [37]
Na3.1Zr1.95Ba0.05Si2PO12 1.20E-03 [37]
Na3.4Zr1.8Co0.2Si2PO12 1.55E-03 [38]
Na3.4Zr1.8Ni0.2Si2PO12 6.18E-04 [38]
Na3.4Zr1.8Zn0.2Si2PO12 7.8E-03 [38]
Na3.4Zr1.8Y0.2Si2PO12 3.52E-04 [38]
Na3.3Zr1.7Pr0.3Si2PO12 1.27E-03 [39]
Na3.3Zr1.7Eu0.3Si2PO12 1.08E-03 [39]
Na3.3Zr1.7Lu0.3Si2PO12 8.30E-04 [39]
Na3Zr1.9Nb0.1Si2PO12 2.10E-04 [40]
Na3Zr1.9Ti0.1Si2PO12 3.77E-04 [40]
Na3.2Zr1.8Fe0.2Si2PO12 7.53E-04 [38]
Na3.2Zr1.8Al0.2Si2PO12 4.39E-04 [38]
Na3.2Zr1.9Ga0.1Si2PO12 1.06E-03 [41]

S0.2 Features selection

A total of 27 features and their determination methods for every compound in
the data set tabulated in Table S4. This list includes descriptors for structural,
physical, chemical, and elemental properties, encompassing a broad spectrum
of potential properties.

However, utilizing multiple features has limitations, as it reduces the pro-
cessing speed of the algorithm and increases its complexity due to the high
dimensionality of the data. Additionally, many of these features exhibit corre-
lation with each other, which needs to be identi�ed in order to enhance model
performance and reduce over�tting. We have used Pearson's correlation coef-
�cient to initially check the correlation between features (Figure S1). It is a
statistical measure that can be used to determine the strength and direction
of the linear relationship between two variables. In feature selection, Pearson's
correlation coe�cient can be used to identify highly correlated features that
may cause collinearity problems. Once the correlation between features has
been calculated, highly correlated features have been removed to reduce redun-
dancy and improve model performance. A threshold value > 0.90 can be set to
determine which features to remove based on their mutual correlation. After
that, principal component analysis (PCA) was used to �nd the highest inde-
pendent weightage of features by transforming the original dataset into a new
set of variables called principal components. These principal components are
linear combinations of the original features that capture most of the variance in
the data as shown in Figure S2. By using PCA, the most important features
have been identi�ed, that contribute to the variance in the data and reduce the
dimensionality of the dataset while preserving most of the information present
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Table S2: List of features used in the model evaluation process with methodology
for determining features.

Feature Description Determination approach

S
Ionic conductivity at room

temperature (S/cm2)
Previously reported data

a Lattice parameter (Å) Previously reported data
b Lattice parameter (Å) Previously reported data
c Lattice parameter (Å) Previously reported data
a/b Ratio of a to b parameters a/b
a/c Ratio of a to c parameters a/c
h Planer diagonal length (Å)

√
a2 + b2

d Cell diameter (Å)
√
c2 + h2

V
Calculated volume according to

crystal system

For trigonal =
a2c· sin(600) and for

monoclinic = abc· sin(β)
R Ionic radius of Na/Li Reported
MR Atomic radius of M atom
MPR Atomic radius of M'

ER Calculated e�ective ionic radius
R·N (Stoichiometric

occupancy)

MER
Calculated e�ective atomic

radius
MR·N

MPER
Calculated e�ective atomic

radius
MPR·N

EV
Calculated e�ective volume of

Na/Li
4
3π·R·N

MEV
Calculated e�ective volume of

M atom
4
3π·MR·N

MPEV
Calculated e�ective volume of

M' atom
4
3π·MPR·N

EN Electronegativity of Na/Li Tabulated
MEN Electronegativity of M atom Tabulated
MPEN Electronegativity of M' atom Tabulated

EEN
E�ective electronegativity

Na/Li
EN·N

MEEN
E�ective electronegativity of M

atom
MEN·N

MPEEN
E�ective electronegativity of M'

atom
MPEN·N

M
Stoichiometric occupancy of

Li/Na at M2 site

Calculated Na/Li
formulaic occupancy
compared to pristine

structure

PO4
Stoichiometric number of PO4

group present in formula

Incremented based on
formulaic count of PO4

in compound

SO4
Stoichiometric number of SO4

group present in formula

Incremented based on
formulaic count of SO4

in compound
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Figure S1: Pearson's correlation matrix corresponding to all features considered
in analysis

Table S3: Summary of the splitted dataset for training and testing.
Training Testing

Good(1) (%) 21.8 19.7
Bad(0) (%) 78.2 80.3
Good/Bad 0.28 0.24

in the data. Here, we have chosen the characteristics with the highest weighting
of each principal component contributing to 95% of the data's variance. This
has provided us with 9 features with a maximum value of Pearson correlation
coe�cient among them less than approximately 65% shown in Figure S3.

S0.3 Model selection

In this work, we compare three machine learning (ML) algorithms such as logis-
tic regression, linear support vector machine, and XG Boost, to see which one
provides the most accurate predictions for the good ionic conductor class. The
details of the Logistic regression model can be found in the main manuscript.

Support vector machine (SVM) classi�er uses a separating hyperplane with
a soft margin that allows for some misclassi�cation [1]. The SVM model is
based on the principle of �nding a hyperplane to use as a boundary that divides
the output classes as cleanly as possible. XGBoost algorithm is a decision-tree-
based ensemble ML algorithm that uses a parallelized implementation of the
sequential tree-building approach [4]. The XGBoost algorithm learns by gradu-
ally incorporating an ensemble of decision trees, each of which has the capacity
to reduce the ensemble's overall error rate. As the new trees are trained to im-
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Figure S2: cumulative variance of principal components for 15 features obtained
by discarding features having more than 90% correlation.

Figure S3: Pearson's correlation matrix for features �ltering out by PAC analysis
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Table S4: List of features used in the model evaluation process with methodology
for determining features.

ML Model
Training
accuracy
(TAC %)

Cross
validation score

(CVS %)

Testing
accuracy
(TSAC %)

Standard
deviation

Logistic
regression

87.4 87.5 82.3 0.06

Support
vector
machine

85.7 87.4 82.3 0.03

XGBoost 82.2 76.2 80.4 0.05

prove upon the areas where the old tree failed, the model's overall performance
improves. The mixed-type data can be processed e�ectively by tree-based algo-
rithms. Ensemble models, such as those based on trees, can reduce over�tting
by combining many weak learners into a single robust one.

The training accuracy (TAC) and 5-fold cross-validation score (CVS) and
testing accuracy (TSAC) percentage for these three di�erent ML models are
compared in Table S4. The CSV was employed to measure the model's predic-
tive capacity at the speci�ed feature set size. It provided a concise assessment
of the extent of under�tting or over�tting observed with given combinations of
features. Models that perform well in training but poorly in cross-validation
are likely over�tted because they cannot generalize or extrapolate beyond their
training dataset. Whereas models that perform poorly in both training and
cross-validation point to under�tting, or a lack of data or appropriate features
for prediction. The hyper-parameters of each model are listed below:

Logistic regression

� Solver = saga, used due to both the number of samples and the number
of features being large.

� penalty = l2, default one is used to reduce model generalization error, and
regulate over�tting with a regularization strength of 6.000569183179

� tolerence = 0.000000000001

Support Vector Machine

� kernel= linear, a linear function used to separate the data, which helps to
get positive and negative weightage of features.

� C=2.0, aims to correctly classify as many training examples as possible
by minimizing the margin violations, even if the margin is smaller.

� gamma=0.001, The lowest values chosen for gamma, which include farther
points, are also considered when selecting the decision boundary.

XGBoost Classi�er

� colsample_bytree= 0.5, half of the fraction of features (columns) to be
randomly sampled for each tree in the model.
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� gamma= 0.001, penalty =l2, minimum loss reduction required to make a
further partition on a leaf node of the tree.

� learning_rate =0.001, step size at each iteration while moving towards
the minimum of the loss function.

� n_estimators= 400, number of trees to be used in the model

Table S5: Formation energy calculations
Formation energy of LiGe2(PO4)3 = -2.00738 eV/atom

Formation energy of Li1+xAxGe2−x(PO4)3
A+3 LA0.167GP LA0.33GP LA0.5GP LA0.667GP LA0.833GP
Cr -2.005 -2.003 -1.995 -2.014 -2.015
Fe -1.993 -1.980 -1.972 -1.966 -1.961
Ga -2.019 -2.031 -2.032 -2.064 -2.076
Y -2.066 -2.125 -2.174 -2.253 -2.316
Nb -2.033 -2.061 -2.105 -2.148 -2.198

A+2 Formation energy of Li1+2xAxGe2−x(PO4)3
Ca -2.052 -2.107 -2.141 -2.195 -2.248
Mg -2.046 -2.091 -2.132 -2.171 -2.210
Sr -2.045 -2.105 -2.134 -2.188 -2.243
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