Supplementary Information

S1. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometries for the IR- detected isomers of 1-phosphabutyne (1)
S1.1 Optimized structure of 1-phosphabutyne (1)
S1.2 IR vibrational bands of 1-phosphabutyne (1)
S1.3
S2. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of 1- methylphosphaallene (2a)
S2.1 Optimized structure of 1-methylphosphaallene (2a)
S2.2 S2.2
S2.3 Formation of 1-methylphosphaallene (2a) from photolyzed phosphabutyne (1)
S3. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of 3-methylphosph- -aallene (2b)
S3.1 Optimized structure of 3-methylphosphaallene (2b)
S3.2 Infrared vibrational bands of 3-methylphosphaallene (2b)
S3.3 Formation of 3-methylphosphaallene (2b) from photolyzed phosphabutyne (1)
S4. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of 1- propynylphosphine (3)
S4.1
S4.2 Infrared vibrational bands of 1-Propynylphosphine (3)
S4.3
S4.4
85. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of P- methylethynylphosphine (4)
S5.1 Optimized structure of P-methylethynylphosphine (4)
S5.2 Infrared vibrational bands of P-methylethynylphosphine (4)
S5.3 Formation of P-methylethynylphosphine (4) from
photolyzed phosphabutyne (1)
S6. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of propadienylphosphine (5)
S6.1
S6.2 Infrared vibrational bands of propadienylphosphine (5)

	S6.3 phosphabutyne (1)	Formation of propadienylphosphine (5) from photolyzed
	S6.4	Formation of propadienylphosphine (5) from photolyzed
		propynylphosphine (3)
	S6.5	Photolysis of 5 in argon matrix (254 nm)
S7. 3	'. Spectral data and B3LYP/au propargylphosphine (6)	g-cc-pVTZ-predicted equilibrium geometry of
	S7.1	Optimized structure of propargylphosphine (6)
	\$7.2	Infrared vibrational bands of propargylphosphine (6)
S8. 5	8. Spectral data and B3LYP/au vinylphosphaethyne 9	g-cc-pVTZ-predicted equilibrium geometry of
	S8.1	Optimized structure of vinylphosphaethyne 9
	S8.2	Infrared vibrational bands of vinylphosphaethyne 9
	S8.3 photolysed at 254 nm	Irradiation at 308 nm of a sample of 1 previously
	S8.4 of 1 and 3	Vinylphosphaethyne appearing in the Hg-lamp photolyses
S9 .	9. IR vibrational bands of mo	nomers and complexes
	S9.1	IR vibrational bands of monomers and complexes
S10	0. Photoproducts generated fr	om species 1. A collective picture of IR band assignments
S11	11. DFT predictions (VPT2//B	3LYP/aug-cc-pVTZ) for anharmonic vibrational frequencies
	of HCCCP	

S1. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometries for the IRdetected isomers of 1-phosphabutyne (1)

Cartesian coordinates / Å					
C 2.06959 0.5 C 1.10397 -0.6 C -0.30085 -0.7 P -1.78417 0. H 1.29699 -1.7 H 1.29697 -1.7 H 1.91527 1.7 H 1.91520 1.7 H 3.10180 0.7					

S1.1. Optimized structure of 1-phosphabutyne (1)

S1.2. Infrared vibrational bands of 1-phosphabutyne (1)

Mode		Theory	Experiment (Argon matrix)
	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies (cm ⁻¹)
CCP bending	475.7	11.2	485.5
H ₃ C-C bending	695.3	1.4	719.8
$\begin{array}{c} CH_2 \text{ rocking (CH_3)} \\ \text{and } CH_2 \text{ unit)} \end{array}$	749.5	0.3	774.5
H ₃ C-CH ₂ bending	1027.8	4.6	1052.7, 1055.0, 1058.8
CH ₂ twisting	1042.1	2.8	1064.7, 1065.6, 1067.9
CH ₂ twisting (CH ₃ and CH ₂ unit)	1223.1	0.5	-
CH ₂ wagging	1269.6	13.8	1292.2, 1296.6
H ₃ C sym. umberlla	1350.3	3.7	1376.4
CH ₂ scissoring	1401.7	5.6	1421.1, 1425.5
H ₃ C twisting	1434.6	8.0	1455.6, 1462.9
	1441.4	1.6	-
C-P stretching	1527.3	38.7	1551.5
C-H stretching	2885.6, 2908.2, 2917.4 2980.6, 2987.8	10.7, 3.3, 31.0, 22.3, 19.6	2828.0, 2886.5, 2915.7, 2951.4, 2995.5

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. * Scaling factor 0.96.

S1.3. IR spectrum of 1-phosphabutyne (1) in Ar matrix.

Top: B3LYP/aug-cc-pVTZ predictions (frequency scaled by 0.96) for the phosphapropyne 1 Bottom: Deposition spectrum of 1 in argon matrix (1:1000).

S2. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of 1methylphosphaallene (2a)

S2.1. Optimized structure of 1-methylphosphaallene (2a)

Cartesia	an coordinates / Å	
C -0.94319 C -2.16159 P 0.55591 C 1.67738 H -2.78525 H -2.78527 H 2.31744 H 2.31783 H 1.12487	-0.06397 0.000 0.39973 -0.000 -0.71997 -0.000 0.78513 -0.000 0.33756 0.924 0.33718 -0.924 0.73623 -0.8814 0.73595 0.8811 1.72280 0.0002	

S2.2. Infrared vibrational bands of 1-methylphosphaallene (2a)

Mode	Th	eory	Experiment
			(Argon matrix)
	Frequencies* Intensities (cm ⁻¹) (km/mol)		Frequencies (cm ⁻¹)
C-C-P bending	435.6	19.5	-
CH ₂ twisting	518.4	1.5	-
P-CH ₃ stretching	617.1 16.8		618.6

C-P stretching	748.0	1.0	-
CH ₂ rocking (methyl	847.1	2.5	-
group)			
CH ₂ wagging	861.4	44.1	858.2
H ₃ C-C bending	870.0	15.3	-
CH ₂ rocking	948.3	2.7	-
H ₃ C umberlla	1253.8	6.7	-
CH ₂ scissoring	1362.6	0.02	-
CH ₂ scissoring	1401.9	6.5	-
(methyl group)	1409.1	8.1	-
CC stretching	1724.3	54.8	1715.8, 1737.4
	2913.1	14.2	-
	2975.8	5.5	-
CH stretching	2976.3	1.6	-
	3014.2	3.1	-
	3039.3	0.5	-

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. * Scaling factor 0.96

S2.3. Formation of 1-methylphosphaallene (2a) from photolyzed phosphabutyne (1)

a) Difference spectra showing the effect of mercury lamp irradiation of 1 compared with the DFTpredicted spectrum of 2a:

Topmost trace shows the B3LYP/aug-cc-pVTZ prediction for the IR spectrum of **2a** (frequency scaled by 0.96). The other three traces are difference spectra (after-minus-before photolysis) illustrating (top to bottom) the net effect of 76 h, 46 h, and 3 h of Hg-lamp irradiation of **1**. Numbers give the band wavenumbers assigned to **2a**. Species **2a** is formed as a product amidst other photoproducts and only the strong IR absorption bands are observed.

b) The allenic C-C stretching region is focused on in the following image

Wavenumber cm-1 Difference spectra (after-minus-before photolysis) of 1 in argon matrix obtained after 3 h (bottom), 46 h (middle) and 76 h (top) of irradiation with Hg lamp (254 nm). Numbers give the band wavenumbers assigned to 2a, 2b and 8. Species 2b is formed in the early stage of photolysis and is mostly destroyed by later stages of photolysis. The unassigned bands in this region are from atmospheric water.

S3. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of 3methylphosphaallene (2b)

S3.1 .	Optimized	structure	of 3-meth	ylphosp	haallene	(2b)
---------------	-----------	-----------	-----------	---------	----------	------

	Cartesian coordinates / Å			
С С Р Н Н Н Н Н	-2.24898 -1.10854 0.15734 1.74625 2.02787 -1.37348 -1.88791 -2.87106 -2.88808	-0.40965 0.57279 0.26254 -0.13562 -0.19130 1.62839 -1.43554 -0.26705 -0.25424	0.00031 0.00214 0.03971 -0.10228 1.29944 -0.01634 0.01176 -0.88590 0.87219	

Mode	Theory		Experiment (Argon matrix)
	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies (cm ⁻¹)
PH bending	467.2	1.4	-
CCCP bending	507.0	11.4	515.0
C-CH ₃ bending	700.7	3.6	-
CH bending (CH unit)	800.3	20.2	809.1
PH bending (in CPH plane)	871.1	33.1	884.3
H ₃ C-C-H bending	957.4	6.9	-
CH ₂ rocking (H ₃ C unit)	1015.8	1.1	-
H ₃ C-C-H bending	1045.1	2.3	-
CH bending (CH unit) (HCC plane)	1240.7	16.7	1262.7
H ₃ C umberlla	1346.7	6.5	-
CH ₂ scissoring	1423.4	6.3	-
(methyl group)	1427.5	7.0	-
CC stretching	1745.7	25.1	1752-1756 (broad)
PH streching	2209.7	86.0	2182.0 or 2257.6 [#]
	2902.4	32.1	-
CH stretching	2946.7	13.2	-
CITSUCULIIIg	2971.1	0.5	-
	2997.3	10.7	-

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. * Scaling factor 0.96 # Both 2182.0 and 2257.6 cm⁻¹ share a common time evolution with the other peaks of **2b**. The peak at 2257.6 cm⁻¹ is a closer match to what is observed for the P-H stretching of CH₂CPH although either could be a combination band, site splitting of the P-H stretching vibration, or a different species whose time evolution is similar to **2b**.

S3.3. Formation of 3-methylphosphaallene (2b) from photolyzed phosphabutyne (1)

a) Fingerprint region: Difference spectra showing the effect of Hg-lamp irradiation of 1 compared with the DFT-predicted spectrum of 2b:

Topmost trace shows the B3LYP/aug-cc-pVTZ prediction for the IR spectrum of **2b** (frequency scaled by 0.96). The other three traces are difference spectra (after-minus-before photolysis) illustrating (bottom to top) the net effect of 3 hours, 46 h, and 76 h of Hg-lamp irradiation of **1**. Numbers give the band wavenumbers assigned to **2b**.Species **2b** is observed only in the early stages of photolysis and is mostly destroyed by later stages. Only a few strong bands of **2b** are observed and they are marked amidst the other photoproducts.

b) The CC and PH stretching region is focused on below

Topmost trace shows the B3LYP/aug-cc-pVTZ prediction for the IR spectrum of **2b** (frequency scaled by 0.96). The other three traces are difference spectra (after-minus-before photolysis) illustrating (top to bottom) the net effect of 76 h, 46 h, and 3 h of Hg-lamp irradiation of **1**. Numbers give the band wavenumbers assigned to **2b**. The broad band around 1754 cm⁻¹ is also focused on in fig S2.3.b. The bands of **2b** are marked amidst the other photoproducts.

S4. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of 1-propynylphosphine (3)

S4.1. Optimized structure of 1-propynylphosphine (3)

	Cartesi	an coordina	tes / Å	
С С Р Н Н Н Н	-2.61182 -1.15854 0.04739 1.80968 2.10084 2.10086 -3.00690 -3.00700 -2.99525	-0.00001 0.00000 -0.00000 -1.03653 1.03652 0.88310 -0.87988 -0.00317	-0.00641 0.01273 0.04904 -0.12730 0.80117 0.80117 0.49883 0.50437 -1.02825	

S4.2. Infrared vibrational bands of 1-propynylphosphine (3)

Mode	Theory		Experiment (Argon matrix)
	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies (cm ⁻¹)
C-P stretching	508.4	14.3	528.6 (528.5)
PH ₂ wagging	817.8	49.6	840.4, 845.5, 847.6 (843.0
			broad)
PH ₂ twisting	854.6	16.1	880.8, 887.7 (882.7)
CH ₃ -C bending	1011.3	0.3	1030.5 (1030.5)
CH ₃ -C bending	1011.8	4.6	1032.0
H ₃ C-C bending	1014.8	0.7	1045.1(1043.6)
PH ₂ scissoring	1061.1	40.9	1083.5, 1088.1 (1083.5)
H ₃ C-C-H bending	1357.6	2.9	1353.9, 1361.5, 1374.8
H ₃ C umberlla	1415.8	8.5	1442.1 (1443.7 broad)
CH ₂ scissoring (methyl group)	1418.9	7.6	1444.0
CC stretching	2192.6	34.2	2217.6(2216.9)
PH ₂ sym. and	2270.3	61.8	2319.0 (2320.0)
asym. stretching	2273.8	55.3	2320.2
	2903.5	26.1	2867.1 (2865.9)
CH stretching	2955.9	7.0	2939.9
	2957.5	5.9	2976.8

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. Values in brackets were measured for **3** photochemically generated from Ar matrix-isolated **1**. * Scaling factor 0.96.

S4.3. Formation of 1-propynylphosphine (3) from photolyzed phosphabutyne (1)

Traces a) and b) are difference spectra (after-minus-before photolysis) showing the net effects of, respectively, 76 h and 3 h of Hg-lamp irradiation (concentration of **3** is highest at the beginning of photolysis); trace c) is the spectrum of authentic **3** isolated in solid Ar. d) B3LYP/aug-cc-pVTZ prediction for the IR spectrum of **3** (frequency scaled by 0.96). The bands of **3** are marked amidst the other photoproducts.

S4.4. Comparison of 1-propynylphosphine (3) and phosphabutyne (1) photolyses

a) Fingerprint region

Difference spectra (after-minus-before photolysis) in argon matrix obtained after 2 days irradiation of 1 (bottom) and 3 (top) in argon matrix. Species 1 and 3 are photoconvertible between each other and they both produce 5 along with other common photoproducts such as HCP, 6, HCCP etc. Asterisk marks a spectral artifact originating from the substrate window.

Difference spectra (after-minus-before photolysis) in argon matrix obtained after 2 days irradiation of 1 (bottom) and 3 (top in argon matrix.

S5. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of P-methylethynylphosphine (4)

S5.1. Optin	mized structur	e of P-methylet	hynylphosphine (4)
-------------	----------------	-----------------	-------------------	---

Cartesia	an coordinates / Å	
C 2.24257 0.3 C 1.10619 -0.0 P -0.53500 -0.0 C -1.55663 0.8 H 3.24327 0.7 H -0.65214 -1. H -1.44823 1.4 H -1.26884 1.4 H -2.60187 0.3	37393 0.00588 .02617 0.02917 .69037 -0.11292 86245 0.02528 .72940 -0.00207 .12074 1.23617 .43130 -0.89648 .48436 0.86906 .56996 0.12512	

S5.2. Infrared vibrational bands of P-methylethynylphosphine (4)

Mode	Th	eory	Experiment (Argon matrix)
	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies (cm ⁻¹)
C-P-C sym.	597.1	14.6	-
stretching			
CH bending	626.4	40.7	629.1
CH ₃ -P str. and PH	647.2	20.1	637.4, 645.7
bending			
CH ₃ -P bend. and PH	683.8	2.3	-
bending			
CH bending	696.4	34.7	695.8

CH ₃ -P bend. and PH	848.8	22.4	844.8
bending			
CH ₃ -P bend. and PH	880.8	26.4	887.2
bending			
CH ₃ -P bend. and PH	978.5	33.1	997.9 (broad)
bending			
H ₃ C umberlla	1268.4	0.9	
CH ₂ scissoring	1407.2	6.7	
(methyl group)	1416.3	5.5	
C-C stretching	2052.6	0.2	
PH stretching	2270.2	61.1	2237.2
CIL 4 1	2920.5	12.7	-
CH stretching	2991.8	5.5	-
(meinyl group)	3007.4	5.3	-
CH stretching	3322.9	67.9	3320.2, 3321.7

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. * Scaling factor 0.96.

S5.3. Formation of P-methylethynylphosphine (4) from photolyzed phosphabutyne (1)

a)

Difference spectra showing the net effect of Hg-lamp irradiation of 1 compared with the DFT-predicted spectrum of 4.

Wavenumber cm-1 Topmost trace shows the B3LYP/aug-cc-pVTZ prediction for the IR spectrum of 4 (frequency scaled by 0.96). The other three traces are difference spectra (after-minus-before photolysis) illustrating (bottom to top) the net effect of 3 hours, 46 h, and 76 hours of Hg-lamp irradiation of 1. Many bands of 4 are overlapped with the bands of other photoproducts, therefore our interpretation is tentative for this species. The acetylenic CH stretching region is shown in the next image

Upon longer irradiation, the C-H stretching band of **4** is overlapped with the analogous band of HCCCP:

Difference spectra (after-minus-before photolysis) of **1** in argon matrix obtained after 3 h (bottom), 46 h (middle) and 76 h (top) of irradiation with Hg lamp (254 nm).

S6. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of propadienylphosphine (5)

S6.1. Optimized structure of propadienylphosphine (5)

Optimized structure of the anti-conformer of 5

Å	tes / Å	Cartesian coordinates / Å				
00000	-0.00000	-0.31571	2.37373	C		
00001	-0.00001	0.21819	1.18810	C		
00004	0.00004	0.73300	-0.00683	C		
00003	-0.00003	-0.34721	-1.50353	Р		
00008	0.00008	1.81182	-0.12252	Η		
02717	1.02717	0.33657	-2.21359	Η		
.02691	-1.02691	0.33696	-2.21368	Η		
92597 ZPVE=0.063649	0.92597	-0.54515	2.88632	Η		
.92597	-0.92597	-0.54499	2.88640	Η		

Optimisized structure of the gauche conformer of 5 (0.34 kcal/mole less stable than anti)

Cartesian coordinates / Å

b)

21 11 0.005002

S6.2. Infrared vibrational bands of propadienylphosphine (5)

Mode	Theory	r (anti)	Theory (gauche)		Experiment (Argon matrix)
	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies (cm ⁻¹)
C-C-C bending	455.6	19.5	-	-	-
Allene twist	464.1	0.8	446.3	7.0	462.9
Allene twist	-	-	481.9	10.9	-
CP stetching	667.4	0.3	634.5	3.2	-
PH ₂ wagging	825.4	31.9	806.8	23.4	829.8, 831.0 (787.7, 829.8, 831.0)
PH ₂ twisting	825.8	0.03	-	-	-
CH ₂ wagging	832.9	60.9	833.5	52.6	-
PH ₂ wagging and CH ₂ twist	-	-	851.2	27.3	-
PH ₂ twist and CH bend	866.8	38.9	856.3	13.6	853.1, 859.8, 885.0, 887.1, 905.9 (853.1, 889.3, 909.4)
CH ₂ rocking	973.7	0.9	976.5	0.9	-
PH ₂ scissoring, allene str. and CH bend	1057.9	14.3	1052.5	16.5	1069.1
PH_2 scissor. and CH bend.	1077.6	12.8	1067.6	4.9	1084.1, 1097.7
CH ₂ scissor., allene str. and CH bend.	1212.2	15.1	1229.8	3.0	1205.1, 1225.6, 1232.7
CH ₂ scissor.	1401.9	2.0	1406.3	0.7	1421.6, 1429.3
CC stretching	1945.5	121.7	1945.5	105.0	1956.2, 1961.9, 1985.1 (1956.2, 1961.9, 1966.6)
PH ₂ symmetric stretching	2264.4	74.0	2258.6	73.2	2310.4 (2310.4 & 2258.8)
PH ₂ assymmetric stretching	2264.5	66.1	2301.6	39.9	2317.5 (2317.5)
CII stratahin a	2999.9	0.2	2994.2	1.7	2992.1
Cri stretching	3003.2	1.4	3000.0	0.8	-
	3070.1	0.2	3062.5	0.9	

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. Values in brackets were measured for **5** photochemically generated from Ar matrix-isolated **1**. * Scaling factor 0.96.

S6.3. Formation of propadienylphosphine (5) from photolyzed phosphabutyne (1)

Trace (a) represents the spectrum of an authentic (synthesized) sample of **5** isolated in solid Ar. Trace (b) is the difference spectrum (after-minus-before photolysis) showing the net effects of 46 h of Hg-lamp irradiation. Trace (c) is the difference spectrum (after-minus-before photolysis) showing the net effects of 76 h of Hg-lamp irradiation

S6.4. Formation of propadienylphosphine (5) from photolyzed propynylphosphine (3)

Spectra of Ar matrix-isolated **5**. Bottom: compound **5** photochemically formed from species **1** (after-minus-before photolysis; the net effect of 3 days of Hg-lamp irradiation of **3** in solid argon). Top: the compound obtained by preparative synthesis.

Bottom: spectrum of **5** (obtained by preparative synthesis) isolated in Ar matrix (**6** is present as a contaminant). In the middle: difference spectrum (after-minus-before photolysis) showing the net effect of 1-day Hg-lamp irradiation of **5**. Top: difference spectrum showing the net effect of 3 days of irradiation.

Bottom: spectrum of 5 (obtained by preparative synthesis) isolated in Ar matrix (6 is present as a contaminant). In the middle: difference spectrum (after-minus-before photolysis) showing the net effect of 1-day Hg-lamp irradiation of 5. Top: difference spectrum showing the net effect of 3 days of irradiation.

S7. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of propargylphosphine (6)

S7.1. Optimized structure of propargylphosphine (6)

	Cartesia	an coordina	tes / Å		
С	-2.33383	-0.42359	0.00002		
С	-1.29048	0.17001	0.00000		V
С	-0.01986	0.86364	-0.00004		
Р	1.51930	-0.23411	-0.00012		
Η	0.06467	1.51192	0.87446		
Η	0.06449	1.51220	-0.87433		
Η	1.10235	-1.11256	1.03443	E=-4 5	58.738625
Η	-3.25732	-0.94596	0.00003	ZPVE	=0.064156
Η	1.10124	-1.11432	-1.03272		

Optimized structure of the anti-conformer of propargylphosphine (6):

Optimized structure of the gauche conformer of propargylphosphine (6) (2.85 kcal/mole less stable than anti):

	Ca	rtesian coor	dinates / Å		
С	-2.33642	-0.41646	-0.01039		D
C	-1.29547	0.18015	0.00526		
C	-0.01761	0.86414	0.03032		
Р	1.41854	-0.36529	-0.11340	C.	
Η	0.07828	1.46131	0.93634		
Η	0.06335	1.54145	-0.82211		E=-458.743171
Η	1.30055	-0.90658	1.19442		
Η	2.43889	0.55090	0.26725		ZPVE=0.0640866
Η	-3.26215	-0.93480	-0.02606		

S7.2 Infrared vibrational bands of propargylphosphine (6)

Mode	Theory	(anti)	Theory (g	gauche)	Gas phase [§]	Experiment
	-				_	(Argon
						matrix)
	Frequencies*	Intensities	Frequencies*	Intensities	Frequencies	Frequencies
	(cm ⁻¹)	(km/mol)	(cm ⁻¹)	(km/mol)	(cm ⁻¹)	(cm ⁻¹)
C-C-C	432.4	14.4	422.6	14.1	432	-
bending						
CPstretching	608.5	6.7	618.6	4.5		-
CH bending	629.9	43.1	642.2	40.7	628	612.4, 614.2
						(612.8,
						614.2)
CH ₂ and PH ₂	633.3	1.1	-	-	-	-
twist						
CH bending	652.2	45.4	650.0	43.5	-	635.4 (635.4)
CH ₂ rock PH ₂	-	-	679.0	27	-	-
wag.			079.0	2.7		
PH ₂ twist	-	-	811.1	7.8	-	-
PH ₂ wagging	822.2	16.1	-	-	833, 846, 863	-
CH ₂ rock. PH ₂	-	-	914.3	19.3	-	-
twist						
CH ₂ wag. PH ₂	930.4	8.8	946.7	1.1	-	-
twist.						
CC stretching	937.4	3.4	-	_	943	-
PH ₂ scissoring	1069.8	12.9	1064.6	15.3	1083, 1095	-

		1	1	1	1	1
CH ₂ twisting	1160.1	2.5	1138.5	6.8	-	-
CH ₂ wagging	1193.9	0.7	1179.6	3.4	1230, 1243,	-
					1257	
CH ₂ scissoring	1394.7	4.9	1401.6	4.8	1418	-
CC stretching	2123.3	15.7	2126.6	11.9	2129	2124.7, 2128.1, 2138.5 (2128.0, 2136.7, 2138.5)
PH ₂ symmetric stretching	2290.4	37.0	2269.2	79.4	2301	-
PH ₂ assymmetric stretching	2297.9	55.2	2291.2	54.8		-
CH ₂ Sym and	2914.5	6.8	2919.3	6.5	2933	-
stretching	2945.9	0.7	2961.2	0.9		-
CH stretching	3331.3	75.3	3331.3	73.5	3335	3322.3, 3326.3, 3334.3, 3343.7 (3322.3, 3326.3, 3326.3, 3334.3, 3343.7)

Some vibrational modes appear as multiple IR absorption bands in solid Ar due to the matrix site effect. Values in brackets were measured for 6 photochemically generated from Ar matrix-isolated 1. * Scaling factor 0.96.

§ R. H. Shay, B. N. Diel, D. M. Schubert, A. D. Norman, Inorg. Chem. 1988, 27, 2378-2382.

S8. Spectral data and B3LYP/aug-cc-pVTZ-predicted equilibrium geometry of vinylphosphaethyne 9

S8.1. Optimized structure of vinylphosphaethyne 9

	Са	artesian coc	ordinates / Å		
C C H H C H P	2.17565 1.18928 1.96812 3.21119 -0.19003 1.43940 -1.71121	-0.40554 0.50004 -1.46647 -0.09640 0.18838 1.55733 -0.11278	0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000		
-		0.112,0	0.00000	•	

S8.2 Infrared vibrational bands of vinylphosphaethyne 9

Mode	Th	eory	Experiment (Argon matrix)
	Frequencies* (cm ⁻¹)	Intensities (km/mol)	Frequencies (cm ⁻¹)
CCP bending	505.5	9.6	-
CH bending (out of plane)	660.5	0.8	-
CH bending (in plane)	720.2	1.4	-
CH ₂ wagging	924.3	44.8	923.8
CH ₂ and CH twisting	961.7	8.9	967.4
CH ₂ rocking	1032.5	2.4	-
CH bending (in plane)	1261.5	2.1	-
CH ₂ scissoring	1366.4	2.2	-
CP stretching	1516.1	23.9	1529.1
CC stretching	1596.9	7.3	1614.0
CH stretching	2995.9	3.4	-
CH ₂ sym. and asym.	3022.8	3.3	-
stretching	3108.4	3.5	-

* Scaling factor 0.96.

S8.3. Irradiation at 308 nm of a sample of 1 previously photolysed at 254 nm

a)

Wavenumber cm-1 Difference spectrum (after-minus-before photolysis) showing the net effect of 1-day 308 nm irradiation of a sample of 1 in solid Ar previously photolyzed for six-days with a mercury lamp. Values marked in red correspond to 9, the asterisks to 7. Downward pointing bands 628, 629, 1966, and 884 cm⁻¹ indicate the decomposition of species 4 and 5 upon 308 nm irradiation.

b)

Difference spectrum (after-minus-before photolysis) showing the net effect of 1-day 308 nm irradiation on a sample of 1 in solid Ar previously photolyzed for six-days with a mercury lamp.

S8.4. Vinylphosphaethyne appearing upon Hg-lamp photolyses of 1 and 3, and not in 5

Difference spectrum (after-minus-before photolysis) showing the net effect of 76 h irradiation with Hg lamp (254 nm)

S9. Complexes of HCP with ethylene and acetylene

S9.1: IR frequencies of the acetylene ethylene complex

Optimized structure of complex *a*

Cartesian coordinates / Å		
		a
P 15.0 -2.1347590000 -0.4327770000	-0.0000490000	
C 6.0 -1.4875740000 0.9623810000	-0.0000130000	
C 6.0 3.5973390000 -0.0613400000	-0.0002010000	
C 6.0 2.4018170000 -0.1130820000	0.0003120000	
Н 1.0 -1.0458290000 1.9377560000	0.000010000	
Н 1.0 4.6579760000 -0.0166900000	-0.0006110000	
н 1.0 1.3397450000 -0.1571680000	0.0007570000	

IR frequencies of Complex a

	bent-complex of acetylene-HCP		Uncomplexed acetylene and HCP (blue)		IR Shifts of the	
Modes of	Infrared fre	equencies	Infrared frequencies		complexes	
vibrations	(Intens	ities)*	(Intens	ities)*		
	B3LYP/aug-cc-	MP2/aug-cc-	B3LYP/aug-	MP2/aug-	B3LYP/aug	MP2/aug
	pvtz	pvtz	cc-pvtz	cc-pvtz	-cc-pvtz	-cc-pvtz
	21.7(0.28)	12.0(0.76)	-	-	-	-
	37.8(0.04)	48.2(0.28)	-	-	-	-
	47.3(0.23)	57.2(0.17)	-	-	-	-
	73.3(0.59)	103.9(0.68)	-	-	-	-
	646.1(4.17)	585.4(3.35)	(28.2(0.00)		7.9	8.1
	647.9(3.58)	587.2(3.68)	058.2(0.00)	577.5(0.0)	9.7	9.9
Cluband	685.1(61.07)	652.1(55.19)	692 9(150 0)		1.3	2.0
C-H benu	691.7(97.75)	662.6(95.1)	083.8(159.0)	050.1(139.3)	7.9	12.5
	749.2(90.49)	736.5(79.1)	727 4(09.06)	722 0(00 7)	11.8	12.7
	752.4(68.28)	739.6(62.5)	757.4(98.00)	725.0(09.7)	15.0	15.8
CP str.	1283.5(0.13)	1192.6(0.0)	1284.8(0.0)	1195.5(0.0)	-1.3	-2.9
CC str.	1982.4(2.03)	1883.5(1.9)	1986.6(0.00)	1889.2(0.0)	4.2	5.7
	3211.9(17.09)	3214.2(17.7)	3215.9(15.8)	3221.1(16.1)	-4.0	-6.9
CH stretching	3263.4(161.06)	3279.2(182.7)	3277.8(89.93)	3294.3(95.6)	-14.4	-15.1
	3366.8(1.85)	3379.7(3.3)	3378.3(0.00)	3392.3(0.0)	-11.5	-12.6

Number highlighted in blue are for uncomplexed HCP. * Scaling factor 0.96

T- complex between acetylene and phosphaethyne

Optimized structure of complex b

Cartesian coordinates / A	Å		
		b	
P 15.0 2.4636040000 0.0012430000	-0.0002270000		
C 6.0 0.9252250000 -0.0084920000	-0.0000680000	<u> </u>	
C 6.0 -3.0162890000 0.6016270000	0.0002200000		
C 6.0 -3.0337150000 -0.5948060000	0.0003040000		
н 1.0 -0.1471500000 -0.0155570000	0.0002360000		
Н 1.0 -3.0046620000 1.6634650000	0.0002380000	T T	
н 1.0 -3.0535750000 -1.6565290000	0.0002000000		

IR frequencies of Complex *b*

	T-complex of acetylene-HCP		Uncomplexed acetylene and			
			HCP (blue)	IR Shifts of the	
Modes of	Infrared fr	equencies	Infrared fro	equencies	complexes	
vibrations	(Intens	sities)*	(Intens	ities)*		
	B3LYP/aug-cc-	MP2/aug-cc-	/aug-cc- B3LYP/aug- MP2/aug		B3LYP/aug	MP2/aug
	pvtz	pvtz	cc-pvtz	cc-pvtz	-cc-pvtz	-cc-pvtz
	24.6(0.06)	22.5(0.12)	-	-	-	-
	45.4 (0.23)	49.4(0.01)	-	-	-	-
	47.1(0.0)	73.1(0.30)	-	-	-	-
	79.4(0.14)	87.4(9.18)	-	-	-	-
	640.3(0.00)	577.4(0.00)	628 2(0.00)	F77 2(0 0)	2.1	0.1
	645.0(0.61)	581.4(0.40)	038.2(0.00)	577.3(0.0)	6.8	4.1
CHbond	710.3(38.8)	685.5(37.50)	692 9(150 0)	650 1/120 2)	26.5	35.4
C-n benu.	719.2(56.89)	699.2(48.53)	005.0(159.0)	050.1(139.3)	35.4	49.1
	740.5(116.14)	723.1(101.72)	727 4(08 06)	722.0(00.7)	3.1	-0.7
	744.5(2.18)	729.5(109.01)	/3/.4(98.06)	123.8(89.7)	7.1	5.7
CP str.	1281.8(2.18)	1193.7(2.39)	1284.8(0.0)	1195.5(0.0)	3	1.8
CC str.	1984.3(0.68)	1885.9(0.48)	1986.6(0.00)	1889.2(0.0)	2.3	3.3
	3192.5(79.91)	3190.9(114.19)	3215.9(15.8)	3221.1(16.1)	-23.4	-30.2
CH stretching	3272.0(93.94)	3288.5(102.1)	3277.8(89.93)	3294.3(95.6)	-5.8	-5.8
	3372.0(0.19)	3382.5(0.31)	3378.3(0.00)	3392.3(0.0)	-6.3	-9.8

Number highlighted in blue are for uncomplexed HCP. * Scaling factor 0.96

Complexes between ethylene and phosphaethyne

Optimized structure of complex *c*

Cartesian co	coordinates / Å		
P 15.0 2.6601670000 -0.0 C 6.0 -2.9153770000 0.6 C 6.0 -2.9187900000 -0.6 C 6.0 1.1218950000 -0.0 H 1.0 -2.9257730000 -1.2 H 1.0 -2.9199050000 -1.2 H 1.0 -2.9194070000 1.2 H 1.0 -2.9135160000 1.2 H 1.0 0.0497180000 -0.0	0000710000 0.0004540000 6632290000 0.0003790000 6623330000 0.0003770000 0008070000 -0.0016360000 2315520000 -0.9203680000 2315670000 -0.9203650000 2324770000 -0.9211490000 0.012700000 -0.0030890000	c J	

IR frequencies of Complex c

T-complex of ethylene-HCP		Uncomplexed ethylene and HCP(blue)		IR Shifts of the	
Infrared frequencies		Infrared frequencies		complexes	
(Inten	sities)*	(Intensities)*			
B3LYP/aug-	MP2/aug-cc-	B3LYP/aug-	MP2/aug-cc-	B3LYP/aug	MP2/aug-
cc-pvtz	pvtz	cc-pvtz	pvtz	-cc-pvtz	cc-pvtz
24.9(0.03)	23.6(0.06)	-	-	-	-
2.5(0.04)	24.97(0.11)	-	-	-	-
41.5(0.19)	70.59(0.23)	-	-	-	-

	59.3(0.05)	70.6(0.07)	-	-	-	-
	84.0(0.06)	86.3(0.09)	-	-	-	-
Ciliband	712.6(55.7)	694.2(47.2)	(02.0/150.0)	650 1(120 2)	28.8	44.1
С-п репа	714.4(62.4)	695.1(53.94)	083.8(159.0)	050.1(139.3)	30.6	45.0
CH2 rock.	801.4(0.07)	789.4(0.00)	801.1(0.04)	790.3(0.00)	0.3	-0.9
CH2 wag.	946.5(118.9)	913.4(0.05)	939.7(97.15)	907.9(0.00)	6.8	5.5
CH2 wag.	950.7(0.07)	943.6(112.8)	945.4(0.05)	936.5(91.77)	5.3	7.1
CH2 twist.	1023.6(0.0)	1026.5(0.00)	1017.9(0.00)	1005.2(0.00)	5.7	21.3
CH2 rock.	1196.4(0.0)	1192.9(2.47)	1195.8(0.00)	1195.1(0.00)	0.6	2.2
CP str.	1281.7(2.0)	1195.2(0.00)	1284.8(0.0)	1195.5(0.0)	-3.1	-0.3
CH2 scissor.	1325.3(0.2)	1323.5(0.21)	1325.1(0.00)	1324.4(0.00)	0.2	-0.9
CH2 scissor.	1420.8(9.7)	1419.9(9.07)	1419.8(9.6)	1419.8(8.83)	1.0	0.1
CC str.	1619.9(0.5)	1606.9(0.35)	1620.9(0.00)	1610.7(0.00)	1.0	0.2
	3001.1(12.5)	3044.0(6.0)	3000.9(16.49)	3045.9(9.54)	0.2	-1.9
	3013.7(0.0)	3060.9(0.051)	3014.1(0.00)	3064.2(0.00)	-0.4	-3.3
CH stretching	3067.8(0.0)	3130.5(0.00)	3066.9(0.00)	3130.5(0.00)	1.1	0
	3094.5(15.3)	3155.8(8.2)	3094.1(20.36)	3157.1(13.08)	-0.4	-1.3
	3191.7(79.9)	3184.9(121.81)	3215.9(15.8)	3221.1(16.1)	-24.2	-36.2

Number highlighted in blue are for uncomplexed HCP. *Scaling factor 0.96

S10. Photoproducts generated from species 1. A collective picture of IR band assignments

Photolysis of 1: 3 h (bottom) and 76 h (top) of mercury lamp (254 nm) irradiation. Asterisk marks a spectral artifact originating from the substrate window.

Region 1:

Photolysis of 1: 3 h (bottom) and 76 h (top) of mercury lamp (254 nm) irradiation.

Region 3:

Photolysis of 1: 3 h (bottom) and 76 h (top) of mercury lamp (254 nm) irradiation.

S11. DFT predctions (VPT2//B3LYP/aug-cc-pVTZ) for anharmonic vibrational frequencies of HCCCP

Fundamental Bands

Mode(n,1)	E(harm)	E(anharm)	Intensities(harm)
Intensities (anharm) 1(1,+0)	3463.249	3337.719	117.76089573
113.59161086	01001210	000,0120	11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2(1,+0)	2162.501	2119.541	16.00217771
3(1,+0)	1583.110	1563.178	90.12470279
91.29019297			
4(1,+0)	708.723	702.338	0.88716803
5(1, -1)	648 101	635 038	247 84351167
256.90729679	010.101	000.000	217.01001107
5(1,+1)	648.101	635.038	247.84351167
256.90729679	E17 100	E14 024	
6(1, -1) 5.41744435	517.133	514.034	5.62523450
6(1,+1)	517.133	514.034	5.62523450
5.41744435			
7(1,-1)	204.832	205.385	154.97334292
7 (1,+1)	204.832	205.385	154.97334292
152.14562050			
Overtones			
Mode(n,l)	E(harm)	E(anharm)	
Intensities(anharm)			
1 (2,+0)	6926.497	6574.454	
2 (2,+0)	4325.003	4224.093	
0.00133500			
3(2,+0)	3166.221	3117.297	
$4(2, \pm 0)$	1417.447	1402.679	
0.05701399	± 1± / • 1 1 /	1102.079	
5(2,-2)	1296.202	1276.591	
46.94614978	1296 202	1255 170	
46.94614978	1290.202	1233.170	
5(2,+2)	1296.202	1276.591	
46.94614978	1024 207	1000 004	
6(2,-2) 0.44493075	1034.267	1028.604	
6(2,+0)	1034.267	1032.144	
0.44493075	1004 045	1000 601	
6(2,+2) 0 44493075	1034.267	1028.604	
7 (2, -2)	409.664	412.173	
0.01175933			
7(2,+0)	409.664	409.699	
0.011/J222			

Combination Bands

Mode(n,1) Mo	ode(n,l)	E(harm)	E(anharm)
2 (1,+0)	1(1,+0)	5625.750	5450.530
0.04974663	1(1 ±0)	5016 359	1800 000
0.06587871	I(I , +0)	5040.559	4099.990
3(1,+0)	2(1,+0)	3745.612	3672.433
4 (1,+0)	1(1,+0)	4171.972	4039.934
0.01679338	_ (_ , _ , ,		
4 (1,+0) 0 14077028	2(1,+0)	2871.225	2814.933
4 (1,+0)	3(1,+0)	2291.834	2265.448
2.98627086	1(1,+0)	4111.350	3953.869
0.79311713			
5 (1,+1) 0 79311713	1(1,+0)	4111.350	3953.869
5 (1,-1)	2(1,+0)	2810.602	2746.038
0.07282705	0 (1 + 0)	0.010 (0.0	0746 000
5(1,+1) 0.07282705	$2(\perp,\pm0)$	2810.602	2746.038
5(1,-1)	3(1,+0)	2231.211	2197.687
0.00988286 5(1.+1)	3(1,+0)	2231 211	2197 687
0.00988286	0(1):0)	2201.011	219,.00,
5 (1,-1)	4(1,+0)	1356.825	1337.626
5 (1,+1)	4(1,+0)	1356.825	1337.626
0.00278731	1 (1 . 0)	2000 200	2051 010
6(1,-1) 0.02181514	$\perp (\perp, \pm 0)$	3980.382	3851.210
6(1,+1)	1(1,+0)	3980.382	3851.210
0.02181514	2(1 + 0)	2679 635	2627 979
0.02188849	Z(1 , 10)	2019.000	2021.919
6(1,+1)	2(1,+0)	2679.635	2627.979
6 (1, -1)	3(1,+0)	2100.244	2074.319
0.04264883	0 (1 . 0)	0100 014	
6(1,+1) 0.04264883	3(1,+0)	2100.244	2074.319
6(1,-1)	4(1,+0)	1225.857	1211.414
0.00250294	4(1 ±0)	1225 857	1011 /11/
0.00250294		1223.037	1211.414
6(1,-1)	5(1,-1)	1165.235	1150.865
0.0∠003548 6(1,-1)	5(1,+1)	1165.235	1149.985
0.02003548			
6(1,+1) 0.02003548	5(1,-1)	1165.235	1149.985

6(1,+1)	5(1,+1)	1165.235	1150.865
0.02003548			
7(1,-1)	1(1,+0)	3668.080	3541.871
0.15050675			
7(1,+1)	1(1,+0)	3668.080	3541.871
0.15050675			
7(1,-1)	2(1,+0)	2367.333	2323.073
0.01309481			
7(1,+1)	2(1,+0)	2367.333	2323.073
0.01309481			
7(1,-1)	3(1,+0)	1787.942	1766.740
0.00002316			
7(1,+1)	3(1,+0)	1787.942	1766.740
0.00002316			
7(1, -1)	4(1,+0)	913.555	911.610
0.17757482			
7(1,+1)	4(1,+0)	913.555	911.610
0.17757482			
7(1,-1)	5(1,-1)	852.933	841.439
0.41165672			
7(1, -1)	5(1,+1)	852.933	839.862
0.41165672			
7(1,+1)	5(1,-1)	852.933	839.862
0.41165672			
7(1,+1)	5(1,+1)	852.933	841.439
0.41165672			
7(1,-1)	6(1,-1)	721.965	719.978
2.42391807			
7(1,-1)	6(1,+1)	721.965	718.804
2.42391807			
7(1,+1)	6(1,-1)	721.965	718.804
2.42391807			
7(1,+1)	6(1,+1)	721.965	719.978
2.42391807			