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1 Derivation of the Expression for the Current
The proof for Eq. 14 is equivalent to traditional tight-binding models. Here, we provide its derivation in the
1D case for a better readability of our methodology. The electronic eigenstate of the Hamiltonian, under a
general tight-binding, is a linear combination of localized states, that is:

|ψ⟩ =
∑
n

Dn(t) |n⟩ , (S1)

where the componentsDn(t) change in time. The state evolves according to the time-dependent Schroedinger
equation. In other words,

ih̄
∂Dn

∂t
=

∑
n′

Hn′,nDn′ , (S2)

in which Hn′,n = ⟨n′|H|n⟩.
In a general tight-binding approach, only the elements Hn,n, Hn∓1,n are non-zero. Therefore, the ex-

pression can be rewritten as

ih̄
∂Dn

∂t
= Hn,n+1Dn+1 +Hn,n−1Dn−1 +Hn,nDn, (S3)

with the corresponding complex conjugate

−ih̄∂Dn

∂t
= H∗

n,n+1D
∗
n+1 +H∗

n,n−1D
∗
n−1 +Hn,nD

∗
n. (S4)

We recall that the discrete continuity equation for the density at the n-th site, ρn, is

∂ρn
∂t

= |e|Dn
∂D∗

n

∂t
+ |e|D∗

n

∂Dn

∂t
. (S5)

Substituting Eq. S3 and S4 into S6 returns

∂ρn
∂t

= (−i|e|/h̄)(Hn,n+1Dn+1D
∗
n −H∗

n+1,nD
∗
n+1Dn)− (−i|e|/h̄)(H∗

n−1,nDn−1Dn −Hn,n−1Dn−1D
∗
n), (S6)

where we recognize the charge density current flux

jn+1,n = (−|e|/h̄)(Hn,n+1Dn+1D
∗
n −H∗

n+1,nD
∗
n+1Dn), (S7)

and influx
jn,n−1 = (−|e|/h̄)(H∗

n−1,nDn−1Dn −Hn,n−1Dn−1D
∗
n). (S8)

Note that jn+1,n is the sum of a complex number minus its conjugate. Therefore, we can further simplify
jn+1,n into

jn+1,n = −(2|e|/h̄)Im(Hn,n+1Dn+1D
∗
n). (S9)
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2 Image pre-processing
An important step for a functional pipeline is the appropriate image pre-processing. Here, we standarized all
heatmaps, initially compressing them to the size of 256x256 and applying a standard scaling filter. Moreover,
their horizontal and vertical axes had a fixed scale. All images were generated using a gray-scale color palette
to avoid noise during the training step.

3 Autoencoder Architecture
The encoder consists of four blocks of convolution layers, as shown in Figure S1. The first block has two
convolution layers with 32 filters. Batch normalization is applied after each convolution[1]. At the end
of the first block, a pooling filter is applied to compress the data. Then, a dropout layer is placed to
avoid overfitting[1]. Blocks 2 and 3 follow a similar architecture using 64 and 128 filters. The last block is
the bottleneck-dense layer, with 256 filters, renormalization, and dropout. The rectified linear unit (relu)
function activated the neuron. The decoder structure is shown in Figure S1. It is worth mentioning that
the number of filters in its last convolution layer is set based on the number of channels (which color ranges
are allowed) in the original image (Nc). Moreover, this particular layer has the sigmoid as the activation
function. Finally, we used the binary cross entropy as the training loss[1]. The autoencoder pipeline was
implemented using the Python package Keras version 2.13.1.
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Figure S1: Encoder (a) and decoder (b) architectures used to process the charge density heatmap images.
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We had used as optimizer algorithm the gradient descent Adam method and the binary cross entropy
function as loss function. The learning rate and other parameters involving the optimizer were set using the
Keras default values. Therefore, the learning rate was set to 0.001.

Moreover, due to the large size of the dataset, the images are loaded in the pipeline through batches.
Here, we set the batch size equal to 40. Finally, the early stopping routine was active to avoid overfitting.

3.1 CNN validation
To ensure an appropriate image representation, the loss function progression was monitored, as shown in
Figure S2 where the loss function is presented as a function of the number of epochs for the training and
testing subsets. As can be seen, the two curves begin to converge after five epochs. Then, they both decay
together until reaching a satisfactory value.
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Figure S2: Loss function (binary cross entropy) as a function of the number of epochs for the train and test
datasets.

To further ensure that the CNN pipeline preserves the images characteristics, we further compared the
original and reconstructed images (after passing through the autoencoder workflow) of selected cases. These
images are present in Figure S3.
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Original Reconstructed

Figure S3: Selected examples where the original images, derived from the simulations, are compared with
their reconstructed counterparts. The reconstructed images were obtained after applying the full autoen-
conder pipeline in the original image.

4 TSNE Parametrization
The representation of the dataset via the tsne method was made after a preliminary search for the appropriate
parametrization tha best represents the clusterization. The variations from each parameters were: perplexity
(5, 10, 40, 100, 500), number of iterations (300, 1500), learning rate (50, 200, 300), and early exaggeration
(10, 100, 200). These limits were preselected after a qualitative search was made in which it was found
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that, beyond these thresholds, the dataset representation showed not appropriate separation. Within this
variation, we found that the following combination delivered the best separation is the one expressed in
table S1.

Parameter Value
Perplexity 10
Number of iterations 1500
Learning rate 200
Early exaggeration 100

Table S1: TSNE hyperparameters to generate Figure 3(a).
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5 FFT mean frequency pairplot

Figure S4: FFT mean frequency pairplot.
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6 ∆jmax pairplot

Figure S5: Charge current amplitude pairplot.
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7 DC pairplot

Figure S6: DC pairplot.
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