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Diffusion coefficients

Table S1: Diffusion coefficients of Li+ ions, anions and solvent molecules at different molar ratios , measured at 30 °C.𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡

system 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡  
𝐷

𝐿𝑖 +

/ m2s-110 ‒ 12
 

𝐷
𝐴 ‒

/ m2s-110 ‒ 12
 /𝐷𝑠𝑜𝑙𝑣𝑒𝑛𝑡

m2s-110 ‒ 12

2.0/1 3.44 ± 0.28 2.21 ± 0.26 2.93 ± 0.34SL/LiTFSI 3.0/1 10.0 ± 1.18 7.54 ± 0.92 9.61 ± 1.06
2.4/1 12.0 ± 0.87 8.44 ± 0.46 8.02 ± 0.53SL/LiFSI1
3.0/1 15.7 ± 1.52 12.8 ± 1.29 11.9 ± 1.17
1.1/1 5.93 ± 0.38 5.79 ± 0.38 7.56 ± 0.50
1.3/1 10.1 ± 0.67 10.2 ± 0.87 12.9 ± 0.92DMC/LiFSI
2.0/1 31.5 ± 1.77 35.4 ± 2.17 44.1 ± 2.54

Phase Shift data
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ure S1: Represenative phase shift data of the electrophoretic NMR measurements on the three DMC-based electrolytes.
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Figure S2: Representative phase shift data of the electrophoretic NMR measurements on the two SL-based electrolytes.
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Figure S3: Comparison of the ionic conductivity calculated from ion mobilities ( ) to that from impedance spectroscopy ( ).𝜎𝑒𝑁𝑀𝑅 𝜎𝐸𝐼𝑆

Mobilities

Table S2: Electrophoretic mobilities of Li+ ions, anions and solvent molecules at different molar ratios , measured at 30 °C. The resulting mobility-𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡

based anion transference numbers are also listed.
 

system 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡  
𝜇

𝐿𝑖 +

/ m2(Vs)-110 ‒ 11
 

𝜇
𝐴 ‒

/ m2(Vs)-110 ‒ 11
 𝜇𝑠𝑜𝑙𝑣𝑒𝑛𝑡

/ m2(Vs)-110 ‒ 11 𝑡 𝜇
𝐴 ‒

2.0/1 9.72 ± 0.95 ‒ 4.07 ± 0.21 2.69 ± 0.47 0.30 ± 0.03SL/LiTFSI 3.0/1 30.1 ± 2.7 ‒ 17.1 ± 2.1 7.81 ± 3.31 0.36 ± 0.05
2.4/1 38.2 ± 4.5 ‒ 19.3 ± 0.3 6.56 ± 1.63 0.33 ± 0.03SL/LiFSI1
3.0/1 47.0 ± 8.0 ‒ 36.9 ± 5.1 6.10 ± 4.16 0.44 ± 0.08
1.1/1 9.59 ± 0.91 ‒ 9.82 ± 1.35 9.83 ± 1.33 0.51 ± 0.08
1.3/1 13.6 ± 1.1 ‒ 17.6 ± 1.6 14.6 ± 1.5 0.56 ± 0.06DMC/LiFSI
2.0/1 37.0 ± 7.2 ‒ 61.9 ± 11.0 34.6 ± 8.6 0.63 ± 0.14
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Very-low-frequency electrochemical impedance spectroscopy (VLF-EIS)
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Figure S4: Exemplary very-low-frequency impedance spectrum of a DMC/LiFSI 1.3/1 electrolyte measured at 30 °C. The red line denotes a fit to the equivalent 
circuit shown in the inset.

0.2 0.3 0.4 0.5 0.6 0.7
40

60

80

100

120

140

160

R
di

ff /
 
c

m
2

d / mm

 DMC/LiFSI 1.1/1
 DMC/LiFSI 1.3/1
 DMC/LiFSI 2.0/1

0.0 0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

8000

10000
 

/ s

d2 / mm2

 DMC/LiFSI 1.1/1
 DMC/LiFSI 1.3/1
 DMC/LiFSI 2.0/1

Figure S5: Results of the VLF-EIS measurements for the DMC-based electrolytes. Left: Plot of diffusion resistance  versus electrode distance d. Right: Time 𝑅𝑑𝑖𝑓𝑓

constant  versus the squared electrode distance . The lines denote linear fits.𝜏 𝑑2
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Figure S6: Results of the VLF-EIS measurements for the SL-based electrolytes. Left: Plot of diffusion resistance  versus electrode distance d. Right: Time 𝑅𝑑𝑖𝑓𝑓

constant  versus the squared electrode distance . The lines denote linear fits.𝜏 𝑑2

The linear fits on the left-hand side of Figs. S5 and S6 were used to calculated the Li+ transference number under anion-blocking conditions:
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𝑡 𝑎𝑏𝑐
𝐿𝑖 + =

1

1 +
𝑅𝑑𝑖𝑓𝑓

𝑑
⋅ 𝜎𝑖𝑜𝑛 ⋅ 𝐴

[S1]

Here,  denotes the area of the electrodes.𝐴

The linear fits on the right-hand side of Figs. S5 and S6 were used to calculate the salt diffusion coefficient

𝐷𝑠𝑎𝑙𝑡 =
𝑑2

4 ⋅ 𝜏
[S2]

Concentration cell measurements
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Figure S7: Open circuit potentials (OCP) of concentration cells with transference at 30 °C. The electrolytes DMC/LiFSI 1.1/1; 1.3/1 and 2.0/1 were measured 
versus a 3.365 M DMC/LiFSI reference electrolyte.
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Figure S8: Open circuit potentials (OCP) of concentration cells with transference at 30 °C. The electrolytes SL/LiTFSI 2.0/1 and 3.0/1 were measured versus a 
2.58 M SL/LiTFSI reference electrolyte
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Representative distributions of Onsager coefficients and thermodynamic factors obtained from Monte 
Carlo-based overdetermination method
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Figure S9a: Representative distributions of the Onsager coefficients (left) and the thermodynamic factor (right) for the DMC/LiFSI 1.1/1 system.
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Figure S9b: Representative distributions of the Onsager coefficients (left) and the thermodynamic factor (right) for the SL/LiTFSI 3.0/1 system.

Mass densities and partial molar volumes
Table S3: Densities  of the studied electrolytes at 30 °C.𝜌

system 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡  / g∙cm-3𝜌
2.0/1 1.572SL/LiTFSI 3.0/1 1.502
1.1/1 1.569
1.3/1 1.528DMC/LiFSI
2.0/1 1.435
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Based on these mass densities at different molar ratios , the partial molar volume of the solvent, ,  and of the salt,  , was  𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡 𝑣0 𝑣𝑠𝑎𝑙𝑡

calculated according to Ref. 5. We assume that the partial molar volume of the Li+ ions,  , can be approximated by the molar volume of the 
𝑣

𝐿𝑖 +

Li+ ions, . Using the ionic radius of a sixfold coordinated Li+ ions,   = 76 pm 6, we calculated the molar volume of the Li+ ions as 
𝑉

𝑀, 𝐿𝑖 + 𝑟
𝐿𝑖 +

follows:

𝑉
𝑀, 𝐿𝑖 + =

4
3

⋅ 𝜋 ⋅ 𝑁𝐴 ⋅ 𝑟
𝐿𝑖 + = 0.11 ⋅ 10 ‒ 5 𝑚3

𝑚𝑜𝑙
= 𝑣

𝐿𝑖 + [S3]

Accordingly, the partial molar volume of the anions were calculated as  = 
𝑣 ‒ = 𝑣𝑠𝑎𝑙𝑡 ‒ 𝑣

𝐿𝑖 + = 𝑣𝑠𝑎𝑙𝑡 ‒ 𝑉
𝑀, 𝐿𝑖 + .

Table S4: Partial molar volumes of the studied electrolytes at 30 °C.

system  / 10-5 m3/mol𝑣0  / 10-5 m3/mol𝑣 ‒  / 10-5 m3/mol
𝑉

𝑀, 𝐿𝑖 + = 𝑣
𝐿𝑖 +

SL/LiTFSI 9.55 14.3 0.11
SL/LiFSI1 9.48 9.05 0.11

DMC/LiFSI 8.19 9.12 0.11

Volume conservation
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Figure S10: Ratio of the molar volume flux  for the DMC/LiFSI and SL/LiTFSI electrolyte systems.𝐽𝑉/𝐽𝑉,𝑡𝑜𝑡

Relations between Onsager coefficients under volume conservation constraint

The Onsager transport equations give the relation between molar fluxes  and the thermodynamic forces  using the Onsager coefficients :2–4𝐽𝑖 𝑋𝑗 𝜎𝑖𝑗

𝐽𝑖 =‒
𝑛

∑
𝑗 = 1

𝜎𝑖𝑗

𝐹2
⋅ 𝑋𝑗 [S4]

Here,  is the total number of mobile species.𝑛

In the case of three species (i) cations with index “+”, (ii) anions with index “-“ and (iii) solvent with index “0”, three Onsager equations can be 
written as:

𝐽 ‒ =‒
𝜎 +‒

𝐹2
⋅

𝑑𝜇̃ +

𝑑𝑥
‒

𝜎 ‒‒

𝐹2
⋅

𝑑𝜇̃ ‒

𝑑𝑥
‒

𝜎 ‒ 0

𝐹2
⋅

𝑑𝜇0

𝑑𝑥
[S5a]
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𝐽0 =‒
𝜎 + 0

𝐹2
⋅

𝑑𝜇̃ +

𝑑𝑥
‒

𝜎 ‒ 0

𝐹2
⋅

𝑑𝜇̃ ‒

𝑑𝑥
‒

𝜎00

𝐹2
⋅

𝑑𝜇0

𝑑𝑥
[S5b]

𝐽 + =‒
𝜎 ++

𝐹2
⋅

𝑑𝜇̃ +

𝑑𝑥
‒

𝜎 +‒

𝐹2
⋅

𝑑𝜇̃ ‒

𝑑𝑥
‒

𝜎 + 0

𝐹2
⋅

𝑑𝜇0

𝑑𝑥
[S5c

]

If the total volume flux  is zero, we have𝐽𝑣

𝐽𝑣 = ∑𝑣𝑖 ⋅ 𝐽𝑖 = 0 [S6]

with  denoting the partial molar volume of species . Since [S6] is valid independent of the acting thermodynamic forces, we can write down the 𝑣𝑖 𝑖
following three relations:

𝑣 + ⋅ 𝜎 +‒ + 𝑣 ‒ ⋅ 𝜎 ‒‒ + 𝑣0 ⋅ 𝜎 ‒ 0 = 0 [S7a
]

𝑣 + ⋅ 𝜎 + 0 + 𝑣 ‒ ⋅ 𝜎 ‒ 0 + 𝑣0 ⋅ 𝜎00 = 0 [S7b]

𝑣 + ⋅ 𝜎 ++ + 𝑣 ‒ ⋅ 𝜎 +‒ + 𝑣0 ⋅ 𝜎 + 0 = 0 [S7c
]

Solving these relations for, ,  and  yields:𝜎 ‒ 0 𝜎00 𝜎 + 0

𝜎 ‒ 0 =‒
1
𝑣0

(𝑣 + ⋅ 𝜎 +‒ + 𝑣 ‒ ⋅ 𝜎 ‒‒ ) [S8a
]

𝜎00 =‒
1
𝑣0

(𝑣 + ⋅ 𝜎 + 0 + 𝑣 ‒ ⋅ 𝜎 ‒ 0) [S8b]

𝜎 + 0 =‒
1
𝑣0

(𝑣 + ⋅ 𝜎 ++ + 𝑣 ‒ ⋅ 𝜎 +‒ ) [S8c
]

Under the assumption that the partial molar volume of the Li+ ions, , is negligible compared to  and , Eqs. [S8a]-[S8c] simplify to:𝑣 + 𝑣 ‒ 𝑣0

𝜎 ‒ 0 =‒
𝑣 ‒

𝑣0
𝜎 ‒‒ [10]

𝜎00 =‒
𝑣 ‒

𝑣0
⋅ 𝜎 ‒ 0 ≈ (𝑣 ‒

𝑣0
)2 ⋅ 𝜎 ‒‒ [11]

𝜎 + 0 =
𝑣 ‒

𝑣0
⋅ 𝜎 +‒ [12]

Definition of Li+-solvent correlation parameter  𝛾

We start by considering the sum of all displacement vectors of the Li+ ions:
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𝑁

∑
𝑖 = 1

Δ𝑅⃗𝑖
+ (𝑡)

[S9
]

and the sum over all displacement vectors of the solvent molecules:

𝑥 ⋅ 𝑁

∑
𝑗 = 1

Δ𝑅⃗𝑗
0(𝑡) [S10]

The summation is done over  cations and solvent molecules, respectively, with  denoting the molar ratio 𝑁 𝑥 ⋅ 𝑁 𝑥 = 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑛𝑠𝑎𝑙𝑡

of solvent to salt.

In the case of a strict vehicular transport mechanisms, the displacement vector of a Li+ ion and the displacement vectors of the  𝑥
solvent molecules bound to this Li+ ions are identical, implying that:

𝑥 ⋅
𝑁

∑
𝑖 = 1

Δ𝑅⃗𝑖
+ (𝑡) =

𝑥 ⋅ 𝑁

∑
𝑗 = 1

Δ𝑅⃗𝑗
0(𝑡) [S11]

𝑥 ⋅
𝑁

∑
𝑖 = 1

Δ𝑅⃗𝑖
+ (𝑡) ‒

𝑥 ⋅ 𝑁

∑
𝑗 = 1

Δ𝑅⃗𝑗
0(𝑡) = 0 [S12]

Via linear response theory, an Onsager coefficient  can be related to the displacement vectors of the species  and  in equilibrium 𝜎𝑖𝑗 𝑖 𝑗
via:2

𝜎𝑖𝑗 =
𝑒2

6𝑉𝑘𝐵𝑇
lim
𝑡→∞

𝑑
𝑑𝑡[(

𝑁𝑖

∑
𝑖 = 1

∆𝑅⃗𝑖(𝑡)) ∙ (
𝑁𝑗

∑
𝑗 = 1

∆𝑅⃗𝑗(𝑡))] [S13]

Squaring of Eq. [S12] gives:

𝑥2 ⋅ [( 𝑁

∑
𝑖 = 1

Δ𝑅⃗𝑖
+ (𝑡))2] + [(𝑥 ⋅ 𝑁

∑
𝑗 = 1

Δ𝑅⃗𝑗
0(𝑡))2] ‒ 2 ∙

𝑁

∑
𝑖 = 1

Δ𝑅⃗𝑖
+ (𝑡)

𝑥 ⋅ 𝑁

∑
𝑗 = 1

Δ𝑅⃗𝑗
0(𝑡) = 0 [S14]

Inserting the terms of the left-hand side of Eq. [S14] into Eq. [S13] yields:

𝑥2 ⋅ 𝜎 ++ + 𝜎00 ‒ 2𝑥 ⋅ 𝜎 + 0 = 0 [S15]

𝑥 ⋅ 𝜎 ++ +
1
𝑥

𝜎00 = 2 ⋅ 𝜎 + 0 [S16]

Now we define a parameter 𝛾

𝛾 =
2 ⋅ 𝜎 + 0

𝑥 ⋅ 𝜎 ++ +
1
𝑥

𝜎00
[13]

which according to Eq. [S16] is unity for a strict vehicular mechanism. Since for uncorrelated movements of Li+ ions and solvent 
molecules, the Onsager coefficient is zero, the parameter  is zero as well.𝜎 + 0 𝛾

Relationship between the parameters  and 𝛽 𝛾

Combining the definition of the cation-anion correlation parameter :𝛽
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𝛽 =
2 ⋅ 𝜎 +‒

𝜎 ++ + 𝜎 ‒‒
[S17]

and the definition of the cation-solvent correlation parameter  with Eqs. 11 and 12 yields:𝛾

𝛾 =‒

𝑣 ‒

𝑣0
⋅ (𝜎 ++ + 𝜎 ‒‒ )

𝑥 ⋅ 𝜎 ++ + 𝜎 ‒‒  (𝑣 ‒

𝑣0
)2 ⋅

1
𝑥

⋅ 𝛽 [S18]

Since the partial molar volumes  and , the Onsager coefficients  and  and the molar ratio  are all positive, the 𝑣 ‒ 𝑣0 𝜎 ++ 𝜎 ‒‒ 𝑥
parameters  and  exhibit opposite signs.𝛾 𝛽

Measured parameters and target values
Table S5: Compilation of all experimental quantities measured for the SL/LiTFSI system as well as of all transport quantities derived from the experimental 
results.

SL/LiTFSI Unit 2.0/1 3.0/1
𝑡 𝜇

𝐿𝑖 + 0.70 (± 0.09) 0.64 (± 0.07)

𝜎𝑖𝑜𝑛 S/m 0.042 (± 0.003) 0.098 (± 0.006)
𝑡 𝑎𝑏𝑐

𝐿𝑖 + 0.50 (± 0.08) 0.32 (± 0.03)

𝐷𝑠𝑎𝑙𝑡 10-11 m2/s 3.0 (± 1.0) 3.3 (± 0.5)
𝑑Δ𝜑

𝑑ln (𝑐𝑠𝑎𝑙𝑡)
V 0.150 (± 0.04) 0.09 (± 0.08)

𝜎 ++ /𝜎𝑖𝑜𝑛 0.55 (± 0.08) 0.41 (± 0.04)
𝜎 ‒‒ /𝜎𝑖𝑜𝑛 0.32 (± 0.20) 0.32 (± 0.10)
𝜎 +‒ /𝜎𝑖𝑜𝑛 -0.12 (± 0.09) -0.15 (± 0.04)

thermodyn. factor 5.6 (± 1.2) 4.8 (± 0.7)
𝛽 -0.28 (± 0.22) -0.41 (± 0.12)

𝜎𝑠𝑒𝑙𝑓
+ 10-2 S/m 3.7 (± 0.3) 8.5 (± 0.3)

𝜎𝑠𝑒𝑙𝑓
‒ 10-2 S/m 2.4 (± 0.3) 6.4 (± 0.8)

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ /𝜎𝑠𝑒𝑙𝑓

+ -0.38 (± 0.15) -0.53 (± 0.16)
𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

‒‒ /𝜎𝑠𝑒𝑙𝑓
‒ -0.44 (± 0.38) -0.51 (± 0.22)

𝜎 + 0 10-2 S/m 0.8 (± 0.6) 2.2 (± 0.6)
𝜎 ‒ 0 10-2 S/m -2.0 (± 1.3) -4.7 (± 1.5)
𝜎00 10-2 S/m 3.0 (± 1.1) 7.1 (± 1.3)

𝜎𝑠𝑒𝑙𝑓
0 10-2 S/m 6.4 (± 0.7) 24.6 (± 2.7)

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
00 /𝜎𝑠𝑒𝑙𝑓

0 -0.53 (± 0.23) -0.71 (± 0.16)
𝛾 0.25 (± 0.19) 0.31 (± 0.09)

Table S6: Compilation of all experimental quantities measured for the SL/LiFSI system as well as of all transport quantities derived from the experimental 
results.1

SL/LiFSI Unit 2.4/1 3.0/1
𝑡 𝜇

𝐿𝑖 + 0.66 (± 0.10) 0.56 (± 0.11)

𝜎𝑖𝑜𝑛 S/m 0.156 (± 0.013) 0.194 (± 0.004)
𝑡 𝑎𝑏𝑐

𝐿𝑖 + 0.23 (± 0.02) 0.29 (± 0.02)

𝐷𝑠𝑎𝑙𝑡 10-11 m2/s 1.2 (± 0.2) 3.2 (± 0.9)
𝑑Δ𝜑

𝑑ln (𝑐𝑠𝑎𝑙𝑡)
V 0.091 (± 0.015) 0.073 (± 0.017)

𝜎 ++ /𝜎𝑖𝑜𝑛 0.36 (± 0.06) 0.39 (± 0.02)
𝜎 ‒‒ /𝜎𝑖𝑜𝑛 0.26 (± 0.08) 0.28 (± 0.02)
𝜎 +‒ /𝜎𝑖𝑜𝑛 -0.19 (± 0.02) -0.16 (± 0.02)

thermodyn. factor 4.3 (± 0.7) 3.7 (± 0.8)
𝛽 -0.61 (± 0.11) -0.48 (± 0.06)

𝜎𝑠𝑒𝑙𝑓
+ 10-2 S/m 13.9 (± 1.0) 15.4 (± 1.5)
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𝜎𝑠𝑒𝑙𝑓
‒ 10-2 S/m 9.8 (± 0.5) 12.5 (± 1.3)

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ /𝜎𝑠𝑒𝑙𝑓

+ -0.60 (± 0.15) -0.51 (± 0.11)
𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

‒‒ /𝜎𝑠𝑒𝑙𝑓
‒ -0.59 (± 0.17) -0.57 (± 0.12)

𝜎 + 0 10-2 S/m 2.8 (± 0.4) 3.0 (± 0.4)
𝜎 ‒ 0 10-2 S/m -3.9 (± 1.3) -5.2 (± 0.4)
𝜎00 10-2 S/m 3.7 (± 1.6) 5.0 (± 0.8)

𝜎𝑠𝑒𝑙𝑓
0 10-2 S/m 22.3 (± 1.5) 34.9 (± 3.4)

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
00 /𝜎𝑠𝑒𝑙𝑓

0 -0.83 (± 0.16) -0.86 (± 0.13)
𝛾 0.38 (± 0.06) 0.24 (± 0.03)

Table S7: Compilation of all experimental quantities measured for the DMC/LiFSI system as well as of all transport quantities derived from the experimental 
results.

DMC/LiFSI Unit 1.1/1 1.3/1 2.0/1
𝑡 𝜇

𝐿𝑖 + 0.49 (± 0.06) 0.44 (± 0.04) 0.37 (± 0.09)

𝜎𝑖𝑜𝑛 S/m 0.098 (± 0.03) 0.151 (± 0.006) 0.363 (± 0.015)
𝑡 𝑎𝑏𝑐

𝐿𝑖 + 0.37 (± 0.08) 0.32 (± 0.08) 0.28 (± 0.023)

𝐷𝑠𝑎𝑙𝑡 10-11 m2/s 0.6 (± 0.2) 2.1 (± 0.8) 5.3 (± 0.9)
𝑑Δ𝜑

𝑑ln (𝑐𝑠𝑎𝑙𝑡)
V 0.14 (± 0.04) 0.15 (± 0.07) 0.17 (± 0.03)

𝜎 ++ /𝜎𝑖𝑜𝑛 0.38 (± 0.06) 0.37 (± 0.06) 0.30 (± 0.03)
𝜎 ‒‒ /𝜎𝑖𝑜𝑛 0.37 (± 0.09) 0.51 (± 0.09) 0.62 (± 0.11)
𝜎 +‒ /𝜎𝑖𝑜𝑛 -0.13 (± 0.04) -0.06 (± 0.06) -0.04 (± 0.05)

thermodyn. factor 4.7 (± 0.9) 5.2 (± 1.0) 5.4 (± 0.8)
𝛽 -0.35 (± 0.12) -0.14 (± 0.14) -0.09 (± 0.11)

𝜎𝑠𝑒𝑙𝑓
+ 10-2 S/m 12.0 (± 0.8) 18.8 (± 1.3) 45.4 (± 2.6)

𝜎𝑠𝑒𝑙𝑓
‒ 10-2 S/m 11.7 (± 0.8) 19.0 (± 1.6) 51.0 (± 3.1)

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ /𝜎𝑠𝑒𝑙𝑓

+ -0.69 (± 0.10) -0.70 (0.11) -0.76 (± 0.09)
𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

‒‒ /𝜎𝑠𝑒𝑙𝑓
‒ -0.69 (± 0.12) -0.59 (± 0.13) -0.56 (± 0.12)

𝜎 + 0 10-2 S/m 1.4 (± 0.4) 1.0 (± 1.0) 1.6 (± 2.0)
𝜎 ‒ 0 10-2 S/m -4.0 (± 1.0) -8.6 (± 1.6) -25.1 (± 4.7)
𝜎00 10-2 S/m 4.5 (± 1.2) 9.6 (± 1.9) 27.9 (± 5.6)

𝜎𝑠𝑒𝑙𝑓
0 10-2 S/m 16.8 (± 1.1) 31.2 (± 2.2) 127.1 (± 7.3)

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
00 /𝜎𝑠𝑒𝑙𝑓

0 -0.73 (± 0.11) -0.69 (± 0.12) -0.78 (± 0.10)
𝛾 0.35 (± 0.12) 0.14 (± 0.14) 0.09 (± 0.11)

G4/LiFSI System

Table S8: Summary of data for the G4/LiFSI system reported before7 and the new calculated parameters , ,  and .𝜎 + 0 𝜎 ‒ 0 𝜎00 𝛾

G4/LiFSI Unit 1.0/1 1.5/1 2.0/1
𝜎𝑖𝑜𝑛 S/m 0.158 0.195 0.245

𝜌 g/cm3 1.32 1.24 1.09
𝜎 ++ /𝜎𝑖𝑜𝑛 0.30 (± 0.07) 0.34 (± 0.06) 0.40 (± 0.04)
𝜎 ‒‒ /𝜎𝑖𝑜𝑛 0.52 (± 0.16) 0.84 (± 0.41) 1.14 (± 0.32)
𝜎 +‒ /𝜎𝑖𝑜𝑛 -0.38 (± 0.01) -0.39 (± 0.04) -0.45 (± 0.03)

𝛽 -0.93 -0.66 -0.58
𝜎 + 0 10-2 S/m 1.6 1.6 1.9
𝜎 ‒ 0 10-2 S/m -2.2 -3.5 -4.8
𝜎00 10-2 S/m 0.9 1.5 2.0

𝛾 0.82 0.54 0.42
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