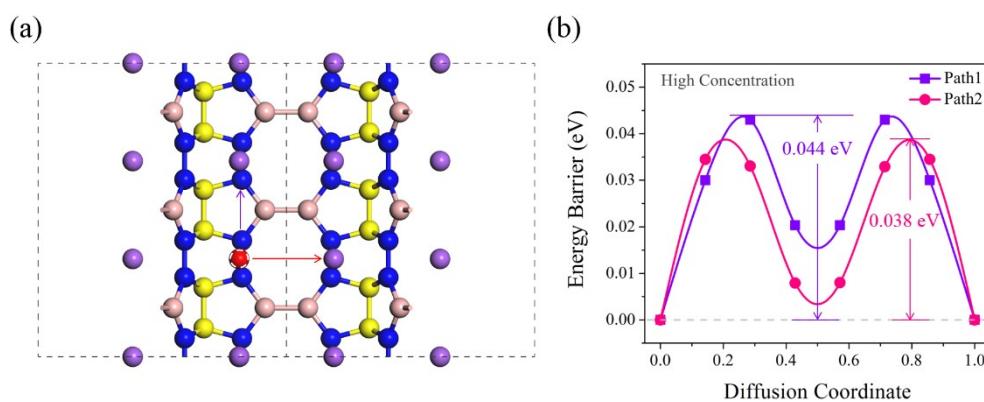

Supplementary Information

A new 3D metallic, ductile, and porous boron nitride as a promising anode material for sodium-ion battery


Wei Sun ^a, Qian Wang ^{a, *}, and Puru Jena ^b

^a School of Materials Science and Engineering, CAPT, Peking University, Beijing 100871, China. * Corresponding author. E-mail: qianwang2@pku.edu.cn

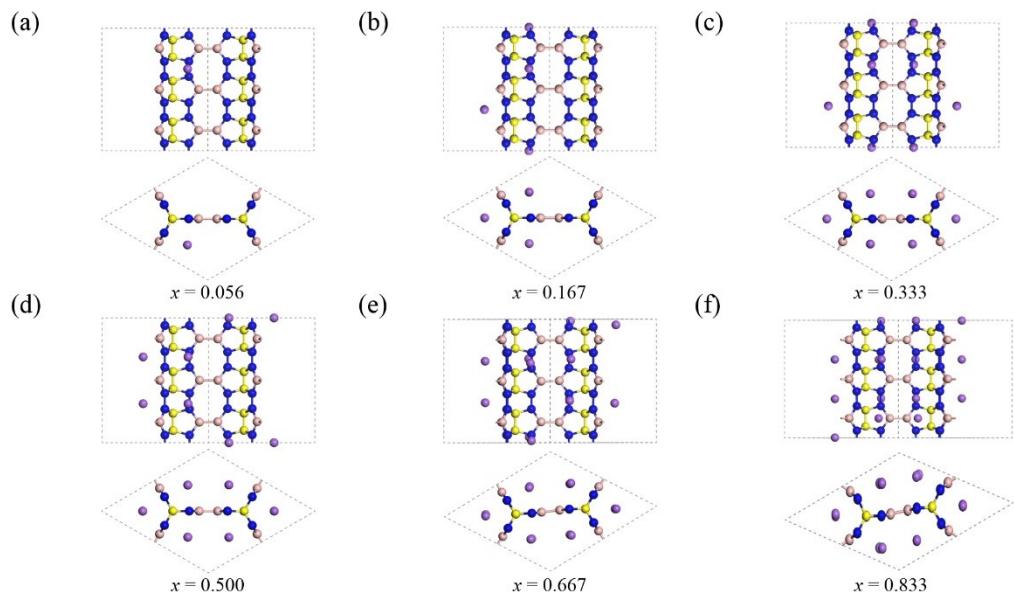

^b Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA 23284, USA

Figure S1. Proposed synthesis pathway of using the bottom-up assembly from pentagonal B_3N_2 molecule to the 3D h- $B_{10}N_{12}$ monolith.

Figure S2. (a) Diffusion paths of Na-ions in high concentration, and (b) corresponding diffusion energy barrier profiles of h- $B_{10}N_{12}$.

Figure S3. Selected energetically most favorable adsorption configurations of h-B₁₀N₁₂ with Na-ion concentrations of (a) $x = 0.056$, (b) $x = 0.167$, (c) $x = 0.333$, (d) $x = 0.500$, (e) $x = 0.667$, and (f) $x = 0.833$.

Table S1. Comparison h-B₁₀N₁₂ with some previously reported boron nitrides in terms of metallicity, porosity, ductility, and their application as SIB anode materials.

Structure	Metallic	Porous	Ductile	SIB anode
h-B ₁₀ N ₁₂ [This work]	✓	✓	✓	✓
HCBN-1/2 [22]	✓	✓	✓	✗
3D-B ₂ N ₂ [27]	✗	✓	✓	✓
(P-6M2)-BN [21]	✓	✓	✓	✗
(IMM2)-BN [21]	✓	✓	✗	✗
penta-B ₄ N ₇ [25]	✓	✓	✗	✗
1z1-BN [27,54]	✗	✓	✗	✓
T-B ₃ N ₃ [20]	✓	✗	✗	✗
<i>M</i> -BN [23]	✓	✗	✗	✗
<i>t</i> -BN ₂ [24]	✓	✗	✗	✗
<i>tP</i> -BN [72]	✓	✗	✗	✗
oA-B ₃ N ₅ [73]	✓	✗	✗	✗
B ₂₈ N ₃₂ [74]	✓	✗	✗	✗

Reference

- [72] M. Xiong, Z. Gao, K. Luo, F. Ling, Y. Gao, C. Chen, D. Yu, Z. Zhao, S. Wei, Three metallic BN polymorphs: 1D multi-threaded conduction in a 3D network, *Phys. Chem. Chem. Phys.* 22 (2020) 489-496.
- [73] M. Xiong, Q. Zhang, M. Gao, Y. Zhou, D. Jin, M. Ma, F. Mao, C. Zhang, Z. Yuan, S. Wei, Prediction of three-dimensional B₃N₅ with one-dimensional metallicity, *Chem. Phys. Lett.* 760 (2020) 138002.
- [74] M. Xiong, Z. Yuan, F. Mao, X. Wang, D. Jin, Q. Zhang, D. Yu, C. Wang, S. Wei, Superhard B₂₈N₃₂ with three-dimensional metallicity: First-principles prediction, *Comput. Mater. Sci.* 188 (2021) 110121.