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This supplementary document is organized as follows:

• Section 1 includes the proposed perturbation method for a general case.

• Section 2 contains details of experimental methods used to obtain results with elec-

trochemical networks.

• Section 3 includes all the experimental results and the associated data plots.

1 Perturbation strategy for inferring coupling

The dynamics of agent k following a perturbation (or control) input is given by

ẋ
(e)
k (t) = f(x

(e)
k ) + gk(x

(e)
k )u

(e)
k (t) +

N∑
j=1,j ̸=k

Kkj(x
(e)
j − x

(e)
k ), (1)

where u
(e)
k is the control input to agent k, x

(e)
k is an n-dimensional state vector respec-

tively, and ẋ
(e)
k is the resulting dynamics during the eth experiment, and gk(x

(e)
k ) ∈ Rn is a

nonlinear function modeling the input channel through which u
(e)
k affects the dynamics of

agent k. Here Kij is the coupling strength between node i and j, modeling the directional

connection from node j to node i. Note that for ease of exposition, we set u(e)
k ∈ R (sin-

gle source of actuation at agent k) for each k = 1, . . . , N , and from hereon, we drop the

superscript (e) from the state trajectories of all the agents during the eth experiment and

only use it with the perturbation inputs and the response dynamics. We propose a set of

short-duration perturbation experiments (e = 0, 1, . . . , E) at each agent of the NDN, and,

in the following, show that the disparity in the response of the agents to different controls

contain the required information to disentangle the natural timescale of a system from its

coupling dynamics.
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Let ∆euk(t) = u
(0)
k (t) − u

(e)
k (t) and ∆eẋk(t, ak0) = ẋ

(0)
k (t) − ẋ

(e)
k (t) denote the difference

between the control applied at the reference (the zeroth) and the eth experiment and the

difference between the resulting dynamics with the same initial condition, i.e., x(0)
k (t0) =

x
(e)
k (t0) = ak0 for k = 1, . . . , N , respectively. Then, from (1), we obtain

∆eẋk(t0, ak0) = gk(ak0)∆euk(t0), (2)

with ∆exk(t0) = 0 for e = 1, . . . , E. This informs that the effect of the input channel, i.e.,

the state-dependent control coefficient gk at ak0, on the control can be estimated by ob-

serving the variations in the controls and the resultant dynamics of xk at the sample point

ak0. Note that the computation of the variation in the dynamics to different perturbations

helps cancel the effect of the drift at the sample point ak0, and hence, aids in isolating the

unknown nonlinear function gk from the drift and the coupling functions.

Motivated by this observation, to separate the coupling functions from the drift of agent

k, we utilize the response of the other agents in the NDN to the perturbation inputs applied

at agent k. In particular, the dynamics of agent i (i ̸= k) following (1) in the absence

of controls (u(e)
i (t) = 0) with the initial conditions x

(e)
i (t0) = ai0 is given by ẋ

(e)
i (t) =

f(xi) +
∑N

j=1,j ̸=i Kij(xj − xi). Since the effect of the perturbation applied to agent k on

the dynamics of agent i is only indirect, the information about the coupling functions is

encoded in the “curvature” or the second-order time-derivative of the state of agent i. In

fact, if the initial condition of the NDN for each experiment is fixed, then the difference in

the rates of agent k between the reference perturbation experiment and the eth experiment

(∆eẋk), and the corresponding difference in the curvatures of the state of agent i (i.e.,

∆eẍi) are proportional. In particular, their relation is given by

∆eẍi(t0, ai0) = Kik∆eẋk(t0, ak0), (3)

where ∆eẍi(t, ai0) = ẍ
(0)
i (t)−ẍ

(e)
i (t) with e = 1, . . . , E. This reveals that the forced measure-
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ment data obtained from these perturbation experiments contain sufficient information to

infer the value of Kik for i = 1, . . . , N and i ̸= k.

Note that the equations derived in (3) is independent of the drift f or the control

coefficients gk, i.e., local dynamics. We can utilize these systems of linear equations for

each node along with the stimulated data from the perturbation experiments for recovering

Kik for each i, k = 1, . . . , N and i ̸= k. Furthermore, the recovered Kik for each i, k =

1, . . . , N , can be utilized together with the data to infer the drift-dynamics f of the agents.

2 Numerical example

In this example, we consider a network of 3 Lorenz oscillators governed by the dynamic

equations

ẋi(t) = σ(yi(t)− xi(t)) +
3∑

i,j=1,j ̸=i

cijxj(t)

ẏi(t) = rxi(t)− yi(t)− xi(t)zi(t) +
3∑

i,j=1,j ̸=i

dijyj(t)

żi(t) = −bzi(t) + xi(t)yi(t). (4)

The oscillator network has both x and y couplings. We consider inferring the network

topology corresponding to the y couplings, and in particular, estimate dij for each i, j. To

do this task, we require that we are able to perturb the dynamics of yi for i = 1, 2, 3 using

any controllable parameter and have access to measurement data for the variables yi(t).

For instance, we consider an external control parameter for the dynamics of yi, resulting
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in the dynamics

ẋi(t) = σ(yi(t)− xi(t)) +
3∑

i,j=1,j ̸=i

cijxj(t)

ẏi(t) = rxi(t)− yi(t)− xi(t)zi(t) +
3∑

i,j=1,j ̸=i

dijyj(t) + ui(t)

żi(t) = −bzi(t) + xi(t)yi(t), (5)

where ui for i = 1, 2, 3 are external controls. For illustration, we consider multiple cases.

Figure 1 (a) A three node (directed chain) network of damped Lorenz systems with directed y -coupling.
Perturbation u1 is applied to node 1 to infer its outgoing connections. (b) The step input applied at
node 1 at time t = 7500ms. (c)-(e) Time series data of variable y at nodes 1,2, and 3. (f) The
slope ẏ1(t) computed at node 1 using Euler approximation. (g)-(h) The curvature ÿi(t) for i = 2, 3

computed at nodes 2 and 3 using Euler approximation. The ratio of the curvature of the coupled nodes
(ÿi, i = 2, 3) with respect to the slope of the perturbed node ẏ1 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 1.

• Case 1: The parameters in (5) are set as follows: σ = 10, r = 6.1, b = 8
3
. Here the

Lorenz system has a stable attractor. We consider three Lorenz systems governed

by (5) with the initial conditions set at (1, 0.3, 0.1), (1, 0.3, 0.2), (1, 0.9, 0.8) for each
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experiment. The number of simulations e at each node was set as E = 2. We apply

a unit step input at t = t0, with t0 = 7500ms. The perturbation signals were selected

as u
(0)
i (t) = 0 and u

(1)
i (t) =

{
0 t<t0
1 t≥t0 . A total of six experiments were conducted, (ap-

plying the two perturbation signals at each node). The coupling strengths, dij was

selected as follows: d12 = d23 = 0.3 and rest of the coupling strengths were set as

zero. In the first two experiments, the u1 was used to perturb the node 1. The ini-

Figure 2 (a) Perturbation u2 is applied to node 2 to infer its outgoing connections. (b) The step input
applied at node 2 at time t = 7500ms. (c)-(e) Time series data of variable y at nodes 1,2, and 3. (f)
The slope ẏ2(t) computed at node 1 using Euler approximation. (g)-(h) The curvature ÿi(t) for i = 1, 3

computed at nodes 1 and 3 using Euler approximation. The ratio of the curvature of the coupled nodes
(ÿi, i = 1, 3) with respect to the slope of the perturbed node ẏ2 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 2.

tial conditions were unchanged in both the experiments (i.e., x(t0), y(t0), z(t0) were

fixed). Computing the difference in the second derivatives for the two simulations
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yields the following linear equations

∆1ÿ2(t0) = d21∆1ẏ1(t0), ∆1y2(t0) = 0, ∆1ẏ2(t0) = 0,

∆1ÿ3(t0) = d31∆1ẏ1(t0), ∆1y3(t0) = 0, ∆1ẏ3(t0) = 0. (6)

Using ∆1ÿ2(t0), ∆1ÿ3(t0), and ∆1ẏ1(t0), the coupling strengths d21 and d31 were re-

covered. Similarly, the second pair of experiments involved applying step signal u2

to perturb node 2, and the last pair of experiments were performed by varying u3 at

node 3. The simulated trajectories are shown in Figures 1-3.

Figure 3 (a) Perturbation u3 is applied to node 3 to infer its outgoing connections. (b) The step input
applied at node 3 at time t = 7500ms. (c)-(e) Time series data of variable y at nodes 1,2, and 3. (f)
The slope ẏ3(t) computed at node 1 using Euler approximation. (g)-(h) The curvature ÿi(t) for i = 1, 2

computed at nodes 1 and 2 using Euler approximation. The ratio of the curvature of the coupled nodes
(ÿi, i = 1, 2) with respect to the slope of the perturbed node ẏ3 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 3.

• Case 2: Here we set the parameters of all the three Lorenz system (5) as follows:
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σ = 10, r = 28, b = 8
3
. The initial conditions were same as case 1. In this case, the

dynamics of the Lorenz system were operating within the chaotic regime.

We apply a step input at t = t0, with t0 = 7500ms and step size 10. The perturbation

signals were selected as u
(0)
i (t) = 0 and u

(1)
i (t) =

{
0 t<t0
10 t≥t0 . A total of six experiments

were conducted, (applying the two perturbation signals at each node). The coupling

strengths, dij was selected as follows: d12 = d23 = 0.3 and rest of the coupling

strengths were set as zero. The simulated trajectories are shown in Figures 4-6.

• Case 3: Here we illustrate our curvature analysis by applying perturbations through

the parameter ri in (4). The initial conditions and parameters were selected to be

similar to those in case 2. We conducted six experiments by perturbing the parameter

ri at each node. In the first experiment at node i, ri was set to 28, while in the second

experiment, ri was perturbed and set to 32. The value of ri, j ̸= i were left unchanged

for both experiments. The simulated trajectories are shown in Figures 7-9.

• Case 4: Here we illustrate our curvature analysis by applying perturbations through

an external input ui for a 7-node network of Lorenz systems. The parameters for all

the nodes were selected to be similar to those in the Case 1. Perturbation was applied

to each individual node in the network and the evolution of the signal of the various

node analyzed. The network topology and the step perturbation applied to node 1 for

inferring the outgoing connections of node 1 are shown in Figure 10. The resulting

y-trajectories for all the seven nodes are shown in Figure 11. The computed slope

of y1 and the curvatures of y2, y3, . . . , y7 are shown in Figure 12. For the purpose of

illustration, we record the results only for the two experiments conducted at node 1,

resulting in correctly recovering the coupling strengths of the outgoing connections

of node 1.
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Figure 4 (a) The y trajectories of all the three Lorenz system showing chaotic evolution. (b) The step
perturbation applied at node 1 at time t = 7500ms through the external control parameter u1 to infer its
outgoing connections. (c) The change in slope ∆ẏ1(t) computed at node 1 using Euler approximation.
(d) The change in slope ∆ẏ1(t) zoomed in around t = t0. (e)(g) The curvature change ∆ÿi(t) for
i = 2, 3 computed at nodes 2 and 3 using Euler approximation. (f)(h) The curvature change zoomed in
at t = t0 of the coupled nodes (∆ÿi, i = 2, 3). The ratio of the curvature of the coupled nodes (∆ÿi,
i = 2, 3) with respect to the slope of the perturbed node ∆ẏ1 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 1.
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Figure 5 (a) The y trajectories of all the three Lorenz system showing chaotic evolution. (b) The step
perturbation applied at node 2 at time t = 7500ms through the external control parameter u2 to infer its
outgoing connections. (c) The change in slope ∆ẏ2(t) computed at node 2 using Euler approximation.
(d) The change in slope ∆ẏ2(t) zoomed in around t = t0. (e)(g) The curvature change ∆ÿi(t) for
i = 1, 3 computed at nodes 1 and 3 using Euler approximation. (f)(h) The curvature change zoomed in
at t = t0 of the coupled nodes (∆ÿi, i = 1, 3). The ratio of the curvature of the coupled nodes (∆ÿi,
i = 1, 3) with respect to the slope of the perturbed node ∆ẏ2 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 2.
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Figure 6 (a) The y trajectories of all the three Lorenz system showing chaotic evolution. (b) The step
perturbation applied at node 3 at time t = 7500ms through the external control parameter u3 to infer its
outgoing connections. (c) The change in slope ∆ẏ3(t) computed at node 3 using Euler approximation.
(d) The change in slope ∆ẏ3(t) zoomed in around t = t0. (e)(g) The curvature change ∆ÿi(t) for
i = 1, 2 computed at nodes 1 and 2 using Euler approximation. (f)(h) The curvature change zoomed in
at t = t0 of the coupled nodes (∆ÿi, i = 1, 2). The ratio of the curvature of the coupled nodes (∆ÿi,
i = 1, 2) with respect to the slope of the perturbed node ∆ẏ3 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 3.
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Figure 7 (a) The y trajectories of all the three Lorenz system showing chaotic evolution. (b) The step
perturbation applied at node 2 at time t = 7500ms through the parameter r1 to infer its outgoing
connections. (c) The change in slope ∆ẏ1(t) computed at node 1 using Euler approximation. (d) The
change in slope ∆ẏ1(t) zoomed in around t = t0. (e)-(g) The curvature change ∆ÿi(t) for i = 2, 3

computed at nodes 2 and 3 using Euler approximation. (f)(h) The curvature change zoomed in at
t = t0 of the coupled nodes (∆ÿi, i = 2, 3). The ratio of the curvature of the coupled nodes (∆ÿi,
i = 2, 3) with respect to the slope of the perturbed node ∆ẏ1 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 1.
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Figure 8 (a) The y trajectories of all the three Lorenz system showing chaotic evolution. (b) The step
perturbation applied at node 2 at time t = 7500ms through the parameter r2 to infer its outgoing
connections. (c) The change in slope ∆ẏ2(t) computed at node 2 using Euler approximation. (d) The
change in slope ∆ẏ2(t) zoomed in around t = t0. (e)(g) The curvature change ∆ÿi(t) for i = 1, 3

computed at nodes 1 and 3 using Euler approximation. (f)(h) The curvature change zoomed in at
t = t0 of the coupled nodes (∆ÿi, i = 1, 3). The ratio of the curvature of the coupled nodes (∆ÿi,
i = 1, 3) with respect to the slope of the perturbed node ∆ẏ2 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 2.
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Figure 9 (a) The y trajectories of all the three Lorenz system showing chaotic evolution. (b) The step
perturbation applied at node 3 at time t = 7500ms through the parameter r3 to infer its outgoing
connections. (c) The change in slope ∆ẏ3(t) computed at node 3 using Euler approximation. (d) The
change in slope ∆ẏ3(t) zoomed in around t = t0. (e)(g) The curvature change ∆ÿi(t) for i = 1, 2

computed at nodes 1 and 2 using Euler approximation. (f)(h) The curvature change zoomed in at
t = t0 of the coupled nodes (∆ÿi, i = 1, 2). The ratio of the curvature of the coupled nodes (∆ÿi,
i = 1, 2) with respect to the slope of the perturbed node ∆ẏ3 at the time of application of the step
input (t0 = 7500ms) reveals the outgoing connections of node 3.

14



1

0

(b)

u1

(a)

u1

t0

0.8

1.0

1.
0

1.
0

Figure 10 (a) A seven node network of Lorenz systems with directed y -coupling demonstrating damped
oscillations. Perturbation u1 is applied to node 1 to infer its outgoing connections. (b) The step
perturbation applied at node 1 at time t = t0 = 7500ms.
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Figure 11 (a)-(g) The y-trajectories of all the seven Lorenz systems for the case when a unit step
perturbation was introduced at node 1 at t = t0 = 7500ms.
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Figure 12 (a) The change in slope of y1 between the two experiments, i.e., ∆ẏ1(t) = ẏ01(t) − ẏ11(t),
where for e = 0, u1(t) = 0 and for e = 1, u1(t) =

{
0 t<t0
1 t≥t0

. (b)-(g) The curvature change of yi for
i = 2, . . . , 7 are recorded. It can be observed that at t0 = 7500ms, the curvature change is nontrivial
for nodes 2, 3, 5, 6 indicating outgoing connections from node 1 to these nodes. The coupling strengths
are directly determined by computing the ratio of the change in curvature at nodes 2-7 to the change in
slope at node 1 at t = t0.
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3 Extraction of coupling strengths from experimental data

In the following, we develop the fitting functions used in the curvature analysis procedure

using the experimental data. To fix ideas, consider the initial value problem (IVP-1) given

by

Ėp(t) = −Ep(t) + 1,

with Ep(0) = 0, t ≥ 0. The solution to this IVP-1 is Ep(t) = 1 − exp(−t). Similarly, for the

IVP-2 given by

Ėc(t) = −Ec(t) + Ep(t),

with Ec(0) = 0, t ≥ 0, the solutions can be obtained as Ec(t) = 1−exp(−t)(1+t). Note that

the IVP-1 can be viewed as the unit step response of the linear system Ėp(t) = −Ep(t)+up(t)

with up(t) = 1. When this step response is inturn applied as input to another linear system

Ėc(t) = −Ec(t) + uc(t), we get the IVP-2. Finally, using the solution of IVP-2 as input to

another linear system, we end up with the IVP-3 given by

ĖI(t) = −EI(t) + Ec(t),

with EI(0) = 0, t ≥ 0, the solutions can be obtained as EI(t) = 1− exp(−t)(1 + t+ 0.5t2).

Since our curvature analysis concerns with the short term response of the systems

around the time instant when the perturbations are applied, we use the parameterized

step response behavior (Ep(t) from IVP-1) as the fitting function for the perturbed node

and the parameterized solution to the IVP-3 as the fitting function for the coupled node.

From the experimental results in the bottom panel of Fig. S8a, the perturbed element is

approximated using the function

Ep(t) = Ap(1− exp(−kpt)). (7)
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The data from the coupled electrode is approximated using the function

Ec(t) = Ac(1− exp(−kct)(1 + kmt)). (8)

For a three electrode in a chain as shown in Fig. S9, where electrode 3 is not directly

coupled to electrode 1, we use the function

Ec(t) = Ac(1− exp(−kct)(1 + kct+ 0.5kmt
2)), (9)

to approximate the trajectories of the electrodes that are not perturbed (i.e., the coupled

electrodes). Akin to the theory of curvature analysis technique, the change of curvature

at the coupled node and the change in the perturbed nodes can be computed using the

parametric curves as follows:

d2Ec

dt2
|t=t0 = △Ëc(t0) = Ack

2
c − Ackm, (10)

and
dEp

dt
|t=t0 = △Ėp(t0) = Apkp. (11)

The extracted coupling strength (Kf ) employed in the analysis of the experimental

result given by the equation

Kf =
Ack

2
c − Ackm
Apkp

. (12)

From equation (12), we extracted some parameters from which the coupling can be cal-

culated; Ac which is the amplitude of the coupled electrode after perturbation, Ap which

is the amplitude of the perturbed electrode after perturbation, kp which is the timescale

factor of the perturbed electrode, kc which is the timescale factor of the coupled elec-

trode and km which is the timescale factor of the indirectly coupled electrode. When

Ac < 3 × std[Ec,b(t)], where Ec,b(t) is the electrode potential of the coupled unit before
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perturbation, we concluded that the observed data is too noisy to infer the weak coupling,

and thus the coupling strength is zero.

4 Detailed Experimental Results

A. Network reconstruction using two homogeneous electrodes

The coupling topology to be reconstructed for two electrodes with homogeneous local

dynamics was set up as shown below. The term homogeneous was defined as the electrodes

having the same individual resistance and the same size.

21

A1= 0.785 mm2 A2 = 0.785 mm2

Rind,1 = 10 kohm Rind,2 = 10 kohm

Rc = 10 kohm

Figure 13 Two electrodes with homogeneous local dynamics.

From the figure above, the applied experimental coupling strength, (κij), where i is the

coupled electrode and j is the perturbed electrode is given by the equation:

κij =
1

RcAi

where Rc is the applied coupling resistance and Ai is the the surface area of the coupled

electrode given by the equation

Ai =
πd2

4

where d is the diameter of the electrode which in this case is 1mm.

Table 1 Applied experimental coupling strength for two homogeneous electrodes

Rc(kohm) 40 30 20 10 8 6 5 3 2 1 0.8
κij(mSmm−2) 0.0318 0.0424 0.0636 0.127 0.159 0.212 0.255 0.424 0.636 1.270 1.590
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Table 2 Applied experimental coupling strength (mSmm−2) and their corresponding extracted coupling
strength (s−1) for two homogeneous electrodes

κij(mSmm−2) 0.0318 0.0424 0.0636 0.127 0.159 0.212 0.255 0.424 0.636 1.270 1.590
A1(V ) 0.055 0.054 0.053 0.049 0.046 0.044 0.043 0.041 0.038 0.037 0.036
k1(s−1) 44.68 47.63 45.08 48.66 46.88 49.78 49.78 48.18 50.22 44.73 44.99
A2(V ) 0.0053 0.0079 0.0086 0.014 0.015 0.017 0.018 0.022 0.025 0.028 0.029
k2(s

−1) 39.12 34.50 50.42 50.10 53.80 53.98 57.97 61.84 72.25 80.82 85.50
k3(s

−1) 0.59 -0.70 -3.12 2.64 -1.53 0.99 -1.98 -1.94 -1.52 0.97 -0.54
Kf (s

−1) 0.00 0.00 0.00 14.72 20.14 22.6 28.27 42.61 68.40 110.5 130.9

Table 3 Extracted coupling strength versus experimental coupling strength (logarithmic data) for two
homogeneous electrodes.

Rc(kohm) 10 8 6 5 3 2 1 0.8 0.6 0.4 0.2
κij(mSmm−2) 0.127 0.159 0.212 0.255 0.424 0.636 1.270 1.590 2.12 3.18 6.36

log10κij -0.896 -0.799 -0.674 -0.594 -0.373 -0.196 0.104 0.201 0.326 0.502 0.803
Kf (s

−1) 14.72 20.14 22.60 28.27 42.61 68.40 110.5 130.9 137.6 179.5 193.1
Log10(Kf) 1.168 1.304 1.354 1.451 1.629 1.835 2.043 2.117 2.138 2.254 2.286

B. Network reconstruction using two heterogeneous electrodes

The perturbation-based technique was also applied to electrodes with heterogeneous local

dynamics where the electrodes had different individual resistance but the same size. The

coupling topology to be reconstructed for such electrodes was set up as shown below.

21

A1= 0.785 mm2 A2 = 0.785 mm2

Rind,1 = 5 kohm Rind,2 = 15 kohm

Rc = 10 kohm

Figure 14 Two electrodes with heterogeneous local dynamics.

Table 4 Extracted coupling strength of two electrodes with heterogeneous dynamics

Perturbed electrode 1
coupled electrode 2

Perturbed electrode 2
coupled electrode 1

A1(V ) 0.0877 0.0524
k1(s

−1) 241.83 145.69
A2(V ) 0.033 0.0117
k2(s

−1) 184.71 186.159
k3(s

−1) 1.265 2.533
Kf (s

−1) 53.08 53.10

The effectiveness of the perturbation technique to infer coupling strength between two
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electrodes with heterogeneous local dynamics, i.e., Rind1 = 5 kohm and Rind2 = 15 kohm

for electrodes 1 and 2 respectively and an applied experimental coupling strength of 0.127

mSmm−2, are presented in the table above.

The effect of the parameters that affect directly coupled electrodes (Ap, kp, Ac, kc) on

the extracted coupling strength for heterogeneous electrodes were examined.

The effect of the amplitudes (α) was described by the following equation:

α = [
Ac,2/Ap,2

Ac,1/Ap,1

]

where Ac,2 is the amplitude of coupled electrode 1 when electrode 2 is perturbed. Ap,2 is

the amplitude of perturbed electrode 2 when electrode 2 is perturbed. Ac,1 is the amplitude

of coupled electrode 2 when electrode 1 is perturbed. Ap,1 is the amplitude of perturbed

electrode 1 when electrode 1 is perturbed

From the values of ((Ap, Ac) of the respective perturbations in the table S4 above;

α = [
0.0117/0.0524

0.0330/0.0877
] =

0.59

1

Thus, the amplitude effect in system is underestimated in the system where electrode 2 is

the perturbed node and electrode 1 is the coupled node according to the ratio (0.59:1).

The effect of the timescale (β) was described by the following equation:

β = [
kc,2/kp,2
kc,1/kp,1

]

where kc,2 is the timescale of coupled electrode 1 when electrode 2 is perturbed. kp,2 is

the timescale of perturbed electrode 2 when electrode 2 is perturbed. kc,1 is the timescale

of coupled electrode 2 when electrode 1 is perturbed. kp,1 is the timescale of perturbed

electrode 1 when electrode 1 is perturbed
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From the values of ((kp, kc) of the respective perturbations in the table S4 above:

β = [
186.159/145.690

184.710/241.830
] =

1.67

1

Thus, the timescale effect in system is overestimated in the system where electrode 2 is the

perturbed node and electrode 1 is the coupled node according to the ratio (1.67:1).

The ratio of the coupling strength (γ) was given by the equation:

γ =
Kf,2

Kf,1

where Kf,2 is the extracted coupling strength when electrode 2 is perturbed. Kf,1 is the

extracted coupling strength when electrode 1 is perturbed.

From the values of Kf of the respective perturbations in the table S4 above;

γ =
53.10

53.08
=

1

1

Thus the estimated coupling strength is the same in the heterogeneous coupled electrodes.

C. Two asymmetric electrodes

The technique was also applied to two asymmetric electrodes to ascertain its robustness

and effectiveness. We define asymmetric electrodes as electrodes having different sizes.

The figure below shows how the coupling topology was set-up to be reconstructed.

1 2

A1= 0.785 mm2 A2 = 1.57 mm2

Rind,1 = 10 kohm Rind,2 = 5 kohm

Rc = 10 kohm

Figure 15 Two asymmetric electrodes .

From the figure above, the estimated extracted coupling strength figures and table for

two asymmetric electrodes are shown below.
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Figure 16 Inference Results for two asymmetric coupled electrodes; (a) Perturbation of electrode 1 (b)
Perturbation of electrode2.

Table 5 Extracted coupling strength of two asymmetric electrodes

Perturbed electrode 1
coupled electrode 2

Perturbed electrode 2
coupled electrode 1

A1(V ) 0.0712 0.0615
k1(s

−1) 157.61 178.48
A2(V ) 0.0225 0.0124
k2(s

−1) 162.96 150.43
k3(s

−1) 1.783 1.709
Kf (s

−1) 53.24 25.56

Fig S8 denotes the evolution of the signal of the perturbed and coupled electrode. The

ratio of the coupling strength (γ) is given by the equation:

γ =
Kf,2

Kf,1

where Kf,2 is the extracted coupling strength when electrode 2 is perturbed. Kf,1 is the

extracted coupling strength when electrode 1 is perturbed.

From the values of Kf of the respective perturbations in the table S5 above;

γ =
53.24

25.56
=

2.08

1

D. Three electrodes in a linear topology

The coupling topology to be inferred for three electrodes in a chain was setup as shown

below.

The extracted coupling strength values and the illustration of the evolution of the sig-

nals of three electrodes coupled in a linear topology are shown in Fig S10 and table S6
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A1= 0.785 mm2 A2 = 0.785 mm2

Rind,1 = 10 kohm Rind,2 = 10 kohm

A3 = 0.785 mm2

Rind,3 = 10 kohm

Figure 17 Three electrodes in a chain.
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Figure 18 Inference Results for three electrodes coupled in a linear topology; (a) Perturbation of electrode
1 (b) Perturbation of electrode2 (c) Perturbation of electrode 3.
Black dotted lines represents Perturbed electrode, blue dotted lines represents directly coupled electrodes
and green dotted lines represents indirectly coupled electrodes except in the case of Fig S10b where the
green dotted lines also represent directly coupled electrode.

Table 6 Extracted coupling strength for three electrodes in a chain

1
Perturbed electrode 1 Perturbed electrode 2 Perturbed electrode 3

coupled electrode 2 coupled electrode 3 coupled electrode 1 coupled electrode 3 coupled electrode 1 coupled electrode 2
A1(V ) 0.059 0.059 0.046 0.046 0.053 0.053
k1(s

−1) 144.13 144.13 156.09 156.09 145.41 145.41
A2(V ) 0.015 0.0066 0.016 0.0022 0.0078 0.022
k2(s

−1) 155.88 76.92 136.04 163.89 93.09 168.72
k3(s

−1) 1.14 -8.14 1.12 1.73 5.73 1.53
Kf (s

−1) 43.11 0.00 41.29 83.84 0.00 82.08

24



The ratio of the coupling strength (Φ)is given by the equation:

Φ =
Kf,Y

Kf,1−2

where Kf,Y is the extracted coupling strength when electrode Y is perturbed. Kf,1−2 is

the extracted coupling strength between electrode 2 and electrode 1 when electrode 2 is

perturbed.

Consequently the values of the rescaled coupling strength in a three electrode arranged in

a linear topology, Φ, is given in the table S7 below.

Table 7 Rescaled extracted coupling strength for three electrodes in a chain

1
Perturbed electrode 1 Perturbed electrode 2 Perturbed electrode 3

coupled electrode 2 coupled electrode 3 coupled electrode 1 coupled electrode 3 coupled electrode 1 coupled electrode 2
Φ 1.04 0.00 1.00 2.03 0.00 1.99

E. Complex Network

To demonstrate the accuracy of the network reconstruction technique, we applied it to

a complex network containing the different types of coupling topology assessed earlier.

Perturbation was applied to each individual node in the network and the evolution of the

signal of the various node analyzed.

Table 8 Extracted coupling strength from perturbation of electrode 1 in a network

Perturbed electrode 1
coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

A1(V ) 0.039 0.039 0.039 0.039 0.039 0.039
k1(s

−1) 189.25 189.25 189.25 189.25 189.25 189.25
A2(V ) 0.021 0.015 0.0091 0.015 0.015 0.0053
k2(s

−1) 127.66 128.13 67.39 131.02 136.70 73.75
k3(s

−1) 0.48 0.94 -2.75 -2.95 -2.62 4.45
Kf (s

−1) 46.23 33.28 0.00 36.47 37.85 0.00

The ratio of the coupling strength (µ)is given by the equation:

µ =
Kf,Y

Kf,3−1

where Kf,Y is the extracted coupling strength when electrode Y is perturbed. Kf,3−1 is
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Rc = 4 kohm

A3 = 0.785 mm2

Rind,3 = 10 kohm

A4 = 0.785 mm2

Rind,4 = 20 kohm

A1 = 0.785 mm2

Rind,1 = 10 kohm

A5 = 0.785 mm2

Rind,5 = 10 kohm

A6 = 0.785 mm2

Rind,6 = 10 kohm

A7 = 0.785 mm2

Rind,7 = 10 kohm

A2 = 1.57 mm2

Rind,2 = 5 kohm

Figure 19 Complex network.

Table 9 Extracted coupling strength from perturbation of electrode 2 in a network

Perturbed electrode 2
coupled electrode 1 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

A1(V ) 0.031 0.031 0.031 0.031 0.031 0.031
k1(s

−1) 79.47 79.47 79.47 79.47 79.47 79.47
A2(V ) 0.010 0.0038 1.5e-04 0.0044 0.0033 0.0018
k2(s

−1) 129.71 46.44 17.09 57.07 43.09 36.88
k3(s

−1) 1.07 -354.07 -1.82e+04 -4.812 -2.1e+03 -0.39
Kf (s

−1) 69.15 0.00 0.00 0.00 0.00 0.00

Table 10 Extracted coupling strength from perturbation of electrode 3 in a network

Perturbed electrode 3
coupled electrode 1 coupled electrode 2 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

A1(V ) 0.031 0.031 0.031 0.031 0.031 0.031
k1(s

−1) 80.13 80.13 80.13 80.13 80.13 80.13
A2(V ) 0.0068 0.0014 0.018 0.0030 0.0028 0.0016
k2(s

−1) 112.20 30.63 76.08 45.75 73.38 42.11
k3(s

−1) 1.19 -0.007 0.063 -0.0019 -1.42 -5.99
Kf (s

−1) 33.77 0.00 41.86 0.00 0.00 0.00
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Figure 20 Inference Results for complex network; Perturbation of electrode 1. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes

the extracted coupling strength between electrode 1 and electrode 3 when electrode 1

is perturbed. Consequently the values of the rescaled coupling strength in a complex

network, µ, is given in the table S16 below
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Figure 21 Inference Results for complex network; Perturbation of electrode 2. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes

Table 11 Extracted coupling strength from perturbation of electrode 4 in a network

Perturbed electrode 4
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 5 coupled electrode 6 coupled electrode 7

A1(V ) 0.027 0.027 0.027 0.027 0.027 0.027
k1(s

−1) 61.53 61.53 61.53 61.53 61.53 61.53
A2(V ) 0.0023 0.0005 0.0092 0.0009 0.00002 0.0002
k2(s

−1) 77.87 13.46 84.23 57.19 23.43 55.73
k3(s

−1) -8.33 -985.30 1.60 -6.39 -0.0006 -0.0002
Kf (s

−1) 0.00 0.00 38.27 0.00 0.00 0.00
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Figure 22 Inference Results for complex network; Perturbation of electrode 3. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes

Table 12 Extracted coupling strength from perturbation of electrode 5 in a network

Perturbed electrode 5
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 6 coupled electrode 7

A1(V ) 0.027 0.027 0.027 0.027 0.027 0.027
k1(s

−1) 103.13 103.13 103.13 103.13 103.13 103.13
A2(V ) 0.0078 0.0042 0.0026 0.0012 0.0093 0.0030
k2(s

−1) 113.88 69.29 54.59 0.052 107.37 60.00
k3(s

−1) 0.39 -3.86 -2.59 249.37 1.17 9.79
Kf (s

−1) 35.50 0.00 0.00 0.00 37.86 0.00
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Figure 23 Inference Results for complex network; Perturbation of electrode 4. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes

Table 13 Extracted coupling strength from perturbation of electrode 6 in a network

Perturbed electrode 6
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 7

A1(V ) 0.024 0.024 0.024 0.024 0.024 0.024
k1(s

−1) 108.75 108.75 108.75 108.75 108.75 108.75
A2(V ) 0.0074 0.0035 0.0013 0.0013 0.0096 0.0083
k2(s

−1) 119.05 76.99 61.26 51.73 97.48 80.17
k3(s

−1) 2.22 8.21 5.91 -9.54 0.64 1.09
Kf (s

−1) 39.49 0.00 0.00 0.00 34.63 20.25
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Figure 24 Inference Results for complex network; Perturbation of electrode 5. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes

Table 14 Extracted coupling strength from perturbation of electrode 7 in a network

Perturbed electrode 7
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6

A1(V ) 0.041 0.041 0.041 0.041 0.041 0.041
k1(s

−1) 74.64 74.64 74.64 74.64 74.64 74.64
A2(V ) 0.0021 0.00008 0.0011 2e-06 0.0028 0.0078
k2(s

−1) 55.05 2.47 8.47 -33.42 59.39 87.58
k3(s

−1) 3.98 5.82 -325.4 -0.0023 -1.38 -1.79
Kf (s

−1) 0.00 0.00 0.00 0.00 0.00 19.55
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Figure 25 Inference Results for complex network; Perturbation of electrode 6. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes
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Figure 26 Inference Results for complex network; Perturbation of electrode 7. Black dotted lines repre-
sents Perturbed electrode, blue dotted lines represents directly coupled electrodes and green dotted lines
represents indirectly coupled electrodes
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Table 15 Extracted coupling strengths from the network topology

Perturbed electrode 1
coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

Kf (s
−1) 46.23 33.28 0.00 36.47 37.85 0.00

Perturbed electrode 2
coupled electrode 1 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

Kf (s
−1) 69.15 0.00 0.00 0.00 0.00 0.00

Perturbed electrode 3
coupled electrode 1 coupled electrode 2 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

Kf (s
−1) 33.77 0.00 41.86 0.00 0.00 0.00

Perturbed electrode 4
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 5 coupled electrode 6 coupled electrode 7

Kf (s
−1) 0.00 0.00 38.27 0.00 0.00 0.00

Perturbed electrode 5
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 6 coupled electrode 7

Kf (s
−1) 35.50 0.00 0.00 0.00 37.86 0.00

Perturbed electrode 6
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 7

Kf (s
−1) 39.49 0.00 0.00 0.00 34.63 20.25

Perturbed electrode 7
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6

Kf (s
−1) 0.00 0.00 0.00 0.00 0.00 19.55

Table 16 Rescaled extracted coupling strengths from the network topology

Perturbed electrode 1
coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

µ 1.38 1.00 0.00 1.09 1.13 0.00
Perturbed electrode 2

coupled electrode 1 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7
µ 2.10 0.00 0.00 0.00 0.00 0.00

Perturbed electrode 3
coupled electrode 1 coupled electrode 2 coupled electrode 4 coupled electrode 5 coupled electrode 6 coupled electrode 7

µ 1.01 0.00 1.25 0.00 0.00 0.00
Perturbed electrode 4

coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 5 coupled electrode 6 coupled electrode 7
µ 0.00 0.00 1.15 0.00 0.00 0.00

Perturbed electrode 5
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 6 coupled electrode 7

µ 1.06 0.00 0.00 0.00 1.14 0.00
Perturbed electrode 6

coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 7
µ 1.18 0.00 0.00 0.00 1.04 0.60

Perturbed electrode 7
coupled electrode 1 coupled electrode 2 coupled electrode 3 coupled electrode 4 coupled electrode 5 coupled electrode 6

µ 0.00 0.00 0.00 0.00 0.00 0.60
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