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Multiplet Calculations

Multiplet calculations were performed by means of the CT4XAS code [45]: 

Fig. S1 L2,3-edges XAS spectra for the S5 and S8 spinels at the different transition metals edges, 
along with simulated spectra using multiplet calculations. The parameters for the multiplet 
calculations are reported in the tables below, according to the pertinent literature in reference. For the 
Mn L2,3-edges, the energies of the peaks mainly due to Mn2+, whose intensity is changed during the 
course of the reaction, are evidenced with vertical dotted lines. Oxidation states and local symmetries 
are chosen according to the results of the analysis of the K-edges spectra shown in Fig. 1.



The L2,3-edge X-ray absorption spectrum of 3d elements is dominated by dipole allowed electron 

excitations from the 2p core states to the 3d valence states. In compounds of these elements, the 3d 

states can be treated as nearly atomic levels. Thus, the near edge spectrum can be calculated simply 

by calculating all the probabilities of the transitions from the 3dn initial state to the 2p53dn+1 final state 

(3dn  2p53dn+1). The calculations can be thought as performed in two steps. First, only the 

interactions within the absorbing atom are considered: the hole in the 2p states and the extra electron 

in the 3d state are strongly interacting, and this gives rise to a large number of final states (multiplets). 

Due to the very small core hole broadening at the 3d element L2,3-edges, all these states are usually 

seen in the spectra. Then, the effect of neighboring atoms is introduced as a perturbation, including 

crystal field and charge transfer effect.

The CTM4XAS program requires the following sets of parameters for the calculations: a) the 

electronic configuration of the 3d metal ion (number of 3d electrons in the initial state); b) all the 

crystal field parameters (i.e. 10Dq for octahedral symmetry, and the additional parameters Dt and Ds 

for lower symmetries); c) charge transfer parameters, accounting for possible covalence of the metal-

ligand bonds; d) Slater integrals reduction parameters, which account for all the electron interactions 

(i.e. 3d electrons with each other, core state with valence state, etc.).

The program is semi-empirical: this means that parameters b-c are usually adjusted until a good 

correspondence between experiment and theory is obtained: in the present case, literature values, as 

taken from the references below, have been used.



Tab. S1: Cr L edge – CTM calculation [S1]

Tab. S2: Mn L edge – CTM calculations [S2-S4]

 



Tab. S3: Fe L edge – CTM calculations [S5-S7]

Tab. S4: Co L edge – CTM calculations [S8,S9]

Tab. S5: Ni L edge – CTM calculations [S10]
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