Electronic supplementary information

Designed synthesis of multi-defective Ti_{0.9}Cu_{0.1}N@Pt as a robust catalyst for oxygen reduction reaction

Sipeng Chen,^{ab} Jiquan Lu,^{ab} Yuying Li,^{ab} Yuying Zheng, ^{ab*} and Ting Zhu ^{c*}

^a Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China

^b School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China

^c School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

*Emails: yyz74@gdut.edu.cn (Y.Y. Zheng); zhut0002@ynnu.edu.cn_(T. Zhu)

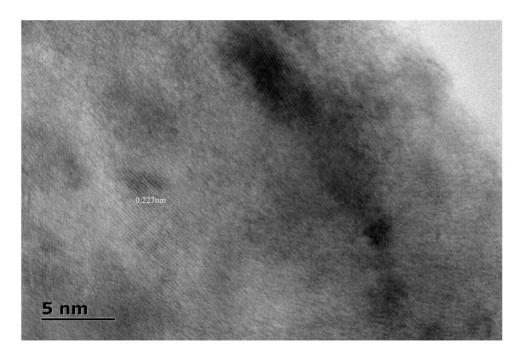
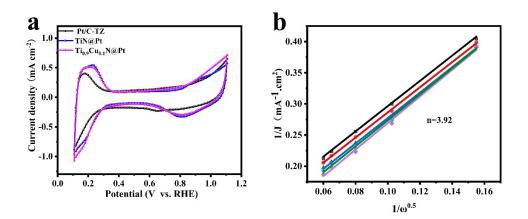
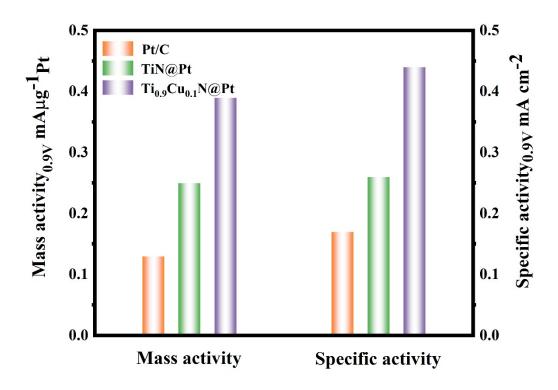
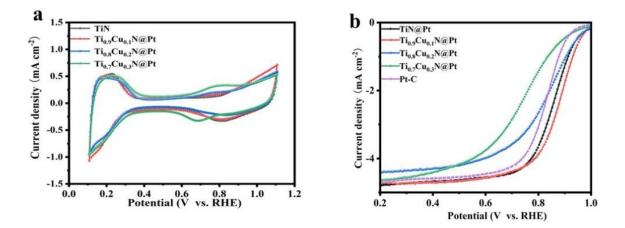
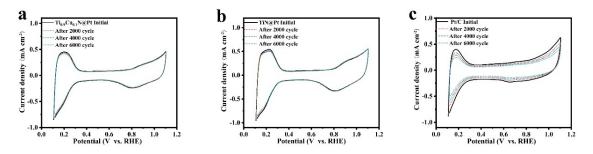
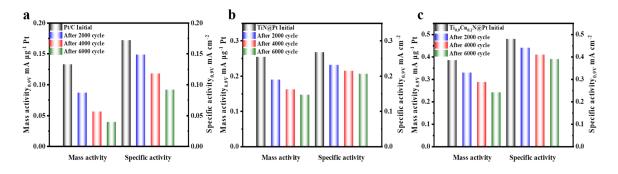



Fig. S1. HR-TEM image of the TiN@Pt control sample.

Fig. S2. (a) CV curves of TiN@Pt, Ti_{0.9}Cu_{0.1}N@Pt, Pt/C, and (b) Koutecky–Levich plots.


Fig. S3. The mass activities and specific activities of all the samples.

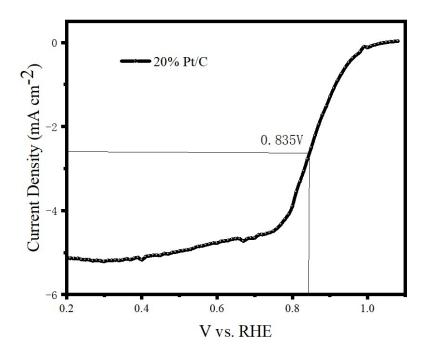

Fig. S4. (a) CVs of $Ti_xCu_yN@Pt$,and (b) LSVs of $Ti_xCu_yN@Pt$ in a solution saturated with O₂ measured with RDE at 1600 rpm and a scan rate of 10 mV s⁻¹.

Fig. S5. CVs of (a) TiN@Pt, (b) Ti_{0.9}Cu_{0.1}N@Pt, and (c) Pt/C before and after 6000 cycles.

Fig. S6. Comparisons of MA and SA performance of Pt/C, TiN@Pt, and Ti_{0.9}Cu_{0.1}N@ Pt at 0.9 V (verse RHE) before and after ADT.

Fig. S7. The LSV curve of the 20% Pt/C control sample obtained a scan rate of 10 mV s^{-1} at 1600 rpm in 0.1M KClO₄ solution.

Material	E _{1/2}	References
20%Pt/C	0.82	A facile synthesis for nitrogen-doped carbon catalyst with high activity of oxygen reduction reaction in acidic media. International Journal of Energy Research, 2021, 45(13)
20%Pt/C	0.84	Platinum Particles Electrochemically Deposited on Multiwalled Carbon Nanotubes for Oxygen Reduction Reaction in Acid Media. Journal of The Electrochemical Society, 2017, 164(9): F1014.
20%Pt/C	0.835	Atomically Dispersed Co2-N6 and Fe-N4 Costructures Boost Oxygen Reduction Reaction in Both Alkaline and Acidic Media, Advanced Materials,2021, 33, 49, 2104718

Table S1. The of $E_{1/2}$ values of the 20%Pt/C samples reported in previous v	<i>w</i> ork.