Supporting Information

Negative linear compressibility and structural stability of the energetic material *trans*-hexanitrostilbene under pressure

Xinglong Deng^a, Dong Li,^b Boyang Fu^a, Yu Liu^a, Weilong He^a, Shourui Li^{b*} and Weizhao Cai^{a,c*}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

^b National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China

^c Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, Zhejiang, China

Corresponding authors: lishourui1203@163.com; wzhcai@uestc.edu.cn

Figure S1. Unit-cell parameter angle β of *trans*-HNS as a function of pressure.

Figure S2. Dihedral angles between the nitro groups and (a) ring on Molecule A (Ring A) and (b) ring on Molecule B (Ring B) in the HNS molecule as a function of pressure.

Figure S3. The variations of lengths of different C-H···O intermolecular contacts under pressure in Molecule A (a) and Molecule B (b). Lines are provided to guide the eye. Symmetry codes: (i) x, 1+y, z; (ii) 1-x, 2-y, 1-z; (iii) 1-x, -1/2+y, 1/2-z; (iv) x, 1/2-y, -1/2+z; (v) x, 1/2-y, 1/2+z; (vi) x, 1.5-y, 1/2+z; (vii) x, -1+y, z; (viii) -x, -y, -z; (ix) x, -1+y, z; (x) x, 1.5-y, -1/2+z.

Figure S4. (a) Evolution of the absorption spectra using ME mixture as the PTM under pressure. (b) Pressure-dependent absorption spectra using silicone oil as the PTM. (c) Variations in the band gap of the sample during the compression-decompression process in ME and silicone oil.

Figure S5. Comparison of the images of HNS single crystals compressed in silicone oil (at 11.76 GPa) and ME (at 12.00 GPa).

Figure S6. Selected Raman spectra of *trans*-HNS using silicone oil as the PTM in the range from 0 to 1300 cm⁻¹ upon compression to 11.76 GPa. The black curve indicates the decompression data to 0.1 MPa.

Figure S7. Selected Raman spectra of *trans*-HNS in the range from 50 cm⁻¹ to 3200 cm⁻¹ upon compression to 11.30 GPa using argon as the PTM. The evolutions of Raman modes during compression are demonstrated at the bottom.

Pressure (GPa)	0.0001	0.60	1.00	1.52	2.16
CCDC	2394370	2394363	2394365	2394368	2394360
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
Phase	Ι	Ι	Ι	Ι	Ι
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Crystal size (mm)	0.22 imes 0.14 imes 0.05	$0.21 \times 0.14 \times 0.05$			
<i>a</i> (Å)	22.122(2)	21.688(15)	21.434(12)	21.300(8)	21.024(10)
<i>b</i> (Å)	5.5747(4)	5.3559(13)	5.2569(8)	5.1648(5)	5.0460(6)
<i>c</i> (Å)	14.6672(13)	14.757(5)	14.764(3)	14.7908(16)	14.8201(19)
α (°)	90	90	90	90	90
β (°)	108.487(11)	108.44(5)	108.70(3)	108.639(17)	108.75(2)
γ (°)	90	90	90	90	90
$V(\text{\AA}^3)$	1715.5(3)	1626.1(14)	1575.7(10)	1541.8(6)	1488.8(7)
Ζ	4	4	4	4	4
$ ho_{ m calc}(m g/cm^3)$	1.743	1.839	1.898	1.940	2.009
$\mu(\text{mm}^{-1})$	0.157	0.165	0.171	0.174	0.181
	$-31 \le h \le 24$	$-10 \le h \le 11$	$-10 \le h \le 10$	$-9 \le h \le 9$	$-10 \le h \le 10$
Index ranges	$-7 \le k \le 7$	$-6 \le k \le 6$			
	$-18 \le l \le 17$	$-13 \le l \le 13$			
$R_{ m int}$	0.0587	0.1242	0.1617	0.0765	0.0816
GOOF	1.022	1.133	1.222	1.089	1.140
$R_1/wR_2 \ [I>2\sigma(I)]^a$	0.0564/0.1335	0.0486/0.0903	0.0766/0.1801	0.0879/0.1986	0.1308/0.2890
R_1/wR_2 [all data]	0.1149/0.1559	0.1174/0.1213	0.1525/0.2668	0.1309/0.2436	0.1660/0.3270
Largest peak/hole (e·Å· 3)	0.25/-0.29	0.09/-0.09	0.12/-0.11	0.15/-0.14	0.28/-0.28

Table S1. Selected crystallographic data of *trans*-HNS single crystal compressed in ME mixture at room temperature.

Pressure (GPa)	2.59	3.16	3.88	4.31	5.19
CCDC	2394364	2394361	2394366	2394362	2394359
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
Phase	Ι	Ι'	Ι'	Ι'	Ι'
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
	0.20 imes 0.14 imes	0.20 imes 0.14 imes	0.19 imes 0.14 imes	0.19 imes 0.14 imes	0.19 imes 0.14 imes
Crystal size (mm)	0.05	0.04	0.04	0.04	0.04
<i>a</i> (Å)	20.995(8)	21.00(2)	20.771(12)	20.684(11)	20.526(16)
<i>b</i> (Å)	4.9882(5)	4.9406(14)	4.8819(8)	4.8371(7)	4.7810(10)
<i>c</i> (Å)	14.8276(17)	14.773(5)	14.771(3)	14.739(3)	14.686(3)
α (°)	90	90	90	90	90
eta (°)	108.678(19)	108.67(5)	108.66(3)	108.64(3)	108.65(4)
γ (°)	90	90	90	90	90
$V(Å^3)$	1471.1(6)	1452.3(17)	1419.0(9)	1397.3(9)	1365.5(12)
Ζ	4	4	4	4	4
$ ho_{ m calc}(m g/cm^3)$	2.033	2.059	2.107	2.140	2.190
$\mu(\text{mm}^{-1})$	0.183	0.185	0.190	0.192	0.197
	$-9 \le h \le 9$	$-9 \le h \le 9$	$-10 \le h \le 10$	$-9 \le h \le 9$	$-9 \le h \le 9$
Index ranges	$-6 \le k \le 6$				
	$-13 \le l \le 13$				
$R_{ m int}$	0.0924	0.1504	0.0964	0.0769	0.1053
GOOF	1.188	1.208	1.071	1.070	1.106
$R_1/wR_2 [I > 2\sigma(I)]^a$	0.1064/0.2301	0.0856/0.1897	0.0854/0.2032	0.0656/0.1671	0.0752/0.1825
R_1/wR_2 [all data]	0.1315/0.2596	0.1327/0.2542	0.1222/0.2389	0.0906/0.1944	0.1113/0.2112
Largest peak/hole (e·Å-3)	0.19/-0.16	0.16/-0.20	0.23/-0.23	0.15/-0.12	0.15/-0.15

Table S1 (continued)

Pressure (GPa)	6.11	7.13	7.91	8.95
CCDC	2394367	2394369	2394358	2394371
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
Phase	Ι'	Ι'	Ι'	Ι'
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Crystal size (mm)	$0.19 \times 0.14 \times 0.04$	$0.19 \times 0.14 \times 0.04$	$0.19 \times 0.14 \times 0.04$	0.18 imes 0.14 imes 0.04
<i>a</i> (Å)	20.499(19)	20.416(13)	20.443(11)	20.421(10)
<i>b</i> (Å)	4.7253(10)	4.6742(8)	4.6447(6)	4.6057(6)
<i>c</i> (Å)	14.628(4)	14.559(3)	14.546(2)	14.4942(19)
α (°)	90	90	90	90
eta (°)	108.61(4)	108.64(3)	108.52(3)	108.46(2)
γ (°)	90	90	90	90
$V(\text{\AA}^3)$	1342.8(14)	1316.4(9)	1309.6(8)	1293.1(7)
Ζ	4	4	4	4
$ ho_{ m calc}(m g/ m cm^3)$	2.227	2.272	2.284	2.313
$\mu(\text{mm}^{-1})$	0.200	0.204	0.205	0.208
	$-9 \le h \le 9$	$-9 \le h \le 9$	$-9 \le h \le 9$	$-9 \le h \le 9$
Index ranges	$-6 \le k \le 6$	$-6 \le k \le 6$	$-5 \le k \le 5$	$-5 \le k \le 5$
	$-13 \le l \le 13$	$-13 \le l \le 13$	$-13 \le l \le 13$	$-13 \le l \le 13$
$R_{\rm int}$	0.0938	0.0919	0.0907	0.1347
GOOF	1.106	1.078	1.047	1.045
$R_1/wR_2 [I > 2\sigma(I)]^a$	0.0687/0.1619	0.0748/0.1478	0.0752/0.1802	0.0880/0.2123
R_1/wR_2 [all data]	0.0971/0.1847	0.1046/0.1689	0.0991/0.2049	0.1172/0.2430
Largest peak/hole (e·Å-	0.18/-0.19	0.13/-0.17	0.14/-0.16	0.18/-0.16
3)				

Table S1 (continued)

[a] $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ for $F_o^2 > 2\sigma(F_o^2)$; $wR_2 = \sum [w(F_o^2 - F_c^2)] / \sum [w(F_o^2)^2]^{1/2}$, where $w = 1 / [\sigma^2 F_o^2 + (AP)^2 + BP]$, and $P = (F_o^2 + 2F_c^2)/3$.

Phase I (0-2.59 GPa)					
Eigenvalue		Crystal direction			
Axes	β_i (TPa ⁻¹)	a	b	С	
X_1	41.6(3)	0	1	0	
X ₂	19.9(2)	0.9552	0	0.2961	
X ₃	-4.4(5)	0.0791	0	0.9969	
V	55.0(7)				

Table S2. Principal axes of the strain tensor and their mean linear compressibility coefficients of *trans*-HNS compressed in the ME mixture in phase I and phase I' (TPa^{-1} , $\times 10^{-3}$ GPa⁻¹).

Table S2. (continued)

Phase I' (3.16-8.95 GPa)					
Eigenvalue		Crystal direction			
Axes	β_i (TPa ⁻¹)	a b c			
X ₁	13.1(4)	0	1.0000	0	
X_2	4.1(6)	0.9771	0	0.2127	
X ₃	3.5(5)	0.1226	0	0.9925	
V	18.6(2)				

Phase I	Raman shift	Assignments	Phase I'	Raman shift	Assignments
0.1 MPa	(cm ⁻¹)		8.62 GPa	(cm ⁻¹)	
<i>v</i> ₁		NO ₂ torsion	<i>v</i> ₁	75.52	NO ₂ torsion
<i>v</i> ₂		NO ₂ torsion	<i>v</i> ₂	92.30	NO ₂ torsion
<i>v</i> ₃		NO ₂ torsion	<i>V</i> ₃	105.95	NO ₂ torsion
V4		NO ₂ torsion	<i>v</i> ₄	127.37	NO ₂ torsion
<i>V</i> 5		NO ₂ torsion	<i>V</i> 5	139.91	NO ₂ torsion
v_6	69.51	NO ₂ torsion	v_6	153.85	NO ₂ torsion
<i>v</i> ₇	88.01	NO ₂ torsion	<i>v</i> ₇	166.16	NO ₂ torsion
<i>v</i> ₈	98.31	NO ₂ torsion	v_8	197.38	NO ₂ torsion
<i>V</i> 9	199.28	ring C-C out of plane bend	<i>v</i> ₉	269.75	ring C-C out of plane bend
v ₁₀	200.01	ring C-C out of plane bend	<i>v</i> ₁₀	284.66	ring C-C out of plane bend
<i>v</i> ₁₁	276.97	ring out of plane deformation	<i>v</i> ₁₁	300.10	ring out of plane deformation
<i>v</i> ₁₂	288.97	NO ₂ in plane rock, ring twist	<i>v</i> ₁₂	338.88.	NO ₂ in plane rock, ring twist
<i>v</i> ₁₂ '		NO ₂ in plane rock, ring twist	<i>v</i> ₁₂ '	324.92	NO ₂ in plane rock, ring twist
<i>v</i> ₁₃	328.88	C-N in plane rock, ring in plane bend	<i>v</i> ₁₃	351.49	C-N in plane rock, ring in plane bend
<i>v</i> ₁₄	753.67	NO ₂ out of plane bend, ring torsion	<i>v</i> ₁₄	756.24	NO ₂ out of plane bend, ring torsion
<i>v</i> ₁₅	772.12	ring in plane bend, C- C=stretching	<i>v</i> ₁₅	780.52	ring in plane bend, C- C=stretching
V ₁₆	829.34	sci (NO ₂)	V16	833.86	sci (NO ₂)
v ₁₆ '		sci (NO ₂)	v ₁₆ '	839.21	sci (NO ₂)
v ₁₇	880.79	sci (NO ₂), ring in plane	v ₁₇	892.12	sci (NO ₂), ring in plane
		bend			bend
v ₁₈	929.13	C-N stretching	<i>v</i> ₁₈	953.88	C-N stretching
<i>v</i> ₁₉	944.01	HC=CH wag	<i>v</i> ₁₉	982.81	HC=CH wag
V ₂₀	1091.37	C-H (in ring) in plane bend, ring breath	V ₂₀	1113.64	C-H (in ring) in plane bend, ring breath
v ₂₁	1173.65	C-C (ring) in plane bend	<i>v</i> ₂₁	1192.96	C-C (ring) in plane bend
v ₂₂	1187.38	C-C (ring) in plane bend	<i>v</i> ₂₂	1210.96	C-C (ring) in plane bend
V ₂₃	1212.09	ring breath	V ₂₃	1252.71	ring breath
v ₂₄	1337.42	$v_{\rm s}({\rm NO}_2)^{\rm a}$	<i>v</i> ₂₄	1397.48	$v_{\rm s}({\rm NO}_2)$
v ₂₄ '		$v_{\rm s}({\rm NO}_2)$	v ₂₄ '	1384.81	$v_{\rm s}({\rm NO}_2)$
v ₂₄ "		$v_{\rm s}({\rm NO}_2)$	v ₂₄ "	1434.35	$v_{\rm s}({\rm NO}_2)$
V ₂₅	1537.46	$v_{\rm as} ({\rm NO}_2)^{\rm b}$	v ₂₅	1538.87	$v_{\rm as}({\rm NO}_2)$
v ₂₅ '		$v_{\rm as}({\rm NO}_2)$	v ₂₅ '	1549.04	$v_{\rm as}({\rm NO}_2)$
v ₂₆	1550.21	$v_{\rm as}({\rm NO}_2)$	v ₂₆	1568.40	$v_{\rm as}({\rm NO}_2)$
v ₂₇	1562.99	$v_{\rm as}({\rm NO}_2)$	v ₂₇	1585.06	$v_{\rm as}({\rm NO}_2)$
V28	1605.21	v(C=C) in aromatic ring	V ₂₈	1630.42	v(C=C) in aromatic ring
V29	1618.89	v(C=C) in aromatic ring,	V29	1649.14	v(C=C) in aromatic ring,
		ring stretching			ring stretching
v ₃₀	1642.93	v(C=C) in –CH=CH–	v ₃₀	1666.85	v(C=C) in –CH=CH–
<i>v</i> ₃₁	2907.30		<i>v</i> ₃₁	2907.30	
<i>v</i> ₃₂	2965.93		<i>v</i> ₃₂	2965.93	
<i>v</i> ₃₃	3064.69	v(C-H) in –CH=CH–	<i>v</i> ₃₃	3143.14	v(C-H) in $-CH=CH-$
v ₃₃ '			V ₃₃ '	3161.25	v(C-H) in $-CH=CH-$

[a] v_s (NO₂) means the symmetric stretching of NO₂; [b] v_{as} (NO₂) means the asymmetric stretching of NO₂