Supporting Information for

Two-Dimensional Inverse Double Sandwich CoB7: Strain-Induced

Non-magnetic to Ferromagnetic Transition

Liang Gu[§], Hui-Min Yang[§] and Li-Ming Yang*

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. [§]These authors contributed equally to the work. (email: <u>Lmyang@hust.edu.cn</u>)

Table of Contents:

- 1. **Fig. S1**. (a) structural analysis, (b) relative energy, (c) phonon spectra, (d) AIMD simulation results, and (e) electronic properties of the low-lying CoB_7 -i allotropes (i = 2, 3, 4, 6, 7). The relative energy is reference to that of the global minimum CoB_7 -1.
- 2. Fig. S2. Phonon spectrum of the boron atomic layer in the CoB₇-1 structure with the Co atom removed.
- 3. **Fig. S3**. Charge density difference plot of the CoB₇-1 structure showing the distribution of electron density between the Co and B atoms.
- 4. **Fig. S4**. Calculated Bader charges of CoB_7-1 , detailing the charge on each atom in the structure.
- 5. Fig. S5. Polar diagrams of in-plane Young's modulus $Y(\theta)$ and Poisson's ratio $v(\theta)$ along different in-plane directions (θ) for eight low-lying CoB₇ allotropes.
- 6. Fig. S6. Phonon dispersion spectra of CoB_7 -1 under biaxial strain (-2% to +10%) showing the stability range from -1% to +8%.
- 7. Fig. S7. Electronic band structures of CoB_7 -1 under biaxial strain (-2% to +10%), illustrating changes in the electronic states near the Fermi level.
- 8. **Fig. S8**. Density of states (DOS) of CoB₇-1 under strain from +2% to +10%, highlighting the shift in electronic states under strain.
- 9. **Table S1**. Elastic constants (C_{ij}), layer modulus (γ), Young's modulus (Y), and Poisson's ratio (ν) for seven low-lying allotropes of 2D CoB₇ nanosheets (CoB₇-i, i=1-7), including a comparison with the ground state CoB₇-1.

Fig. S1. (a) structural analysis, (b) relative energy, (c) phonon spectra, (d) AIMD simulation results, and (e) electronic properties of the low-lying CoB_7 -i allotropes (i = 2, 3, 4, 6, 7). The relative energy is reference to that of the global minimum CoB_7 -1.

Fig. S2. The phonon spectrum of the boron atomic layer in the CoB₇-1 structure with the Co atom removed.

Fig. S3. The Charge density difference plot of the CoB₇-1.

Fig. S4. The calculated Bader charges of the CoB₇-1.

Fig. S5. Polar diagrams of (a) in-plane Young's modules $Y(\theta)$ and (b) Poisson's ratio $v(\theta)$ along an arbitrary in-plane direction θ (θ is the angle relative to the x direction) for eight low-lying allotropes (CoB₇-i, i=1-8) of 2D CoB₇ nanosheets.

Fig. S6. Phonon dispersion spectra for CoB₇-1 under biaxial strain from -2% to +10%, the stable interval of strain of phonon spectra is $-1\% \sim +8\%$.

Fig. S7. Electronic band structures of CoB₇–1 under biaxial strain from -2% up to +10%. The Fermi level is set at 0 eV.

Fig. S8. Density of states of CoB_7-1 under biaxial strain from +2% up to +10%. The Fermi level is set at 0 eV.

Table S1. Elastic constants (C_{ij} , N/m), Layer modulus (γ , N/m), Young's modules (Y, N/m), Poisson's ratio (υ) of seven low-lying allotropes of 2D CoB₇ nanosheets (CoB₇-i), for the easy of comparison, the ground state CoB₇-1 is also listed here, although it has already been discussed in the main text.

CoB7-i	C11	C ₂₂	C ₁₂	C ₆₆	γ	Young modulus (N/m)		Poisson's ratio	
						\mathbf{Y}_{x}	\mathbf{Y}_{y}	\mathfrak{v}_x	v_y
CoB7-1	386.1	305.8	72.6	174.7	209.3	368.8	292.1	0.2374	0.1881
CoB7-2	281.4	294.9	20.4	166.7	154.3	280.0	293.5	0.0693	0.0727
CoB7-3	461.7	333.9	35.7	112.6	216.7	457.9	331.1	0.1069	0.0773
CoB7-4	368.1	300.4	36.1	135.6	185.2	363.7	296.9	0.1203	0.0982
CoB7-5	444.1	299.6	15.8	134.4	193.9	443.3	299.1	0.0528	0.0357
CoB 7 –6	277.4	277.4	156.7	60.4	217.0	188.9	188.9	0.5648	0.5648
CoB7-7	333.8	294.2	37.4	57.9	175.7	329.1	290.0	0.1272	0.1121
CoB7-8	231.4	224.7	66.5	77.4	147.3	211.7	205.6	0.2961	0.2875