Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

## Supporting Information for Influence of Internal Electrostatics on Reduction Potentials in Amine-ligated Bimetallic Copper Complexes

Prateek Saini, Shubham Gupta and Srinivasan Ramakrishnan\*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076

\*sriniramk@iitb.ac.in

| S. No. | Table of Contents                                                                     | Page No. |
|--------|---------------------------------------------------------------------------------------|----------|
| 1.     | Spin Density Plots for [Cu <sub>2</sub> L <sub>2</sub> B <sub>n</sub> ] <sup>4+</sup> | S2-S6    |
| 2.     | Computational Results for [CuZnL <sub>2</sub> B <sub>n</sub> ] <sup>4+</sup>          | S6-S7    |
| 3.     | Spin Density Plots for [CuZnL <sub>2</sub> B <sub>n</sub> ] <sup>4+</sup>             | S8-S9    |
| 4.     | Supplementary Computational Results: Effect of changes to ligand environment          | S10-S11  |
| 5.     | Crystallographic Information                                                          | S11-S12  |
| 6.     | Characterization (HRMS, FTIR, scXRD)                                                  | S13-S16  |
| 7.     | Benchmarking of Reduction Potential Calculations Against<br>Known Systems             | S17-S18  |
| 8.     | Supplementary Cyclic Voltammetry Data                                                 | S18      |
| 9.     | Supplementary Computational Results: Dielectric and Functional Dependence             | S19      |



**Figure S1.** DFT-computed redox potentials as a function of the number of carbons in the diamine linker (n) in the (A)  $E_1^{\circ}$  (B)  $E_2^{\circ}$  with SMD, IEFPCM, CPCM (CH<sub>3</sub>CN)





D

Ε



G



Н



I



Figure S2. Spin density plots for A)  $[Cu_2L_2B_0]^{3+}$ , B)  $[Cu_2L_2B_1]^{3+}$ , C)  $[Cu_2L_2B_2]^{3+}$ , D)  $[Cu_2L_2B_3]^{3+}$ . E)  $[Cu_2L_2B_4]^{3+}$ , F)  $[Cu_2L_2B_5]^{3+}$ , G)  $[Cu_2L_2B_6]^{3+}$ , H)  $[Cu_2L_2B_8]^{3+}$  and I)  $[Cu_2L_2B_{10}]^{3+}$ . Spin populations are shown next to the Cu centers.



**Figure S3.** Electrostatic contributions to the calculated reduction potentials for  $[CuZnL_2B_n]^{4+}$  in (A) CH<sub>3</sub>CN, THF and DMSO. (B) Correlation between redox potentials (in CH<sub>3</sub>CN) with MESP values at the Cu center (where n = 0-4).

Table S1. Absolute MESP values for  $[Cu_2L_2B_n]^{4+}$  and  $[CuZnL_2B_n]^{4+}$  with n=0-4 in the gas phase and CH<sub>3</sub>CN.

| n | Cu-Cu (MESP in a.u.) |                    | Zn-Cu (MESP in a.u.) |                    |  |
|---|----------------------|--------------------|----------------------|--------------------|--|
|   | Gas                  | CH <sub>3</sub> CN | Gas                  | CH <sub>3</sub> CN |  |
| 0 | -25.7745             | -25.6804           | -25.7640             | -25.6708           |  |
| 1 | -25.7775             | -25.6909           | -25.7769             | -25.6926           |  |
| 2 | -25.7898             | -25.7127           | -25.7897             | -25.7155           |  |
| 3 | -25.8011             | -25.7297           | -25.8013             | -25.7319           |  |
| 4 | -25.8111             | -25.7435           | -25.8115             | -25.7449           |  |



**Figure S4.** Comparison of the linear fits of the computed reduction potentials for  $[Cu_2L_2B_n]^{4+}$  (orange) and  $[CuZnL_2B_n]^{4+}$  (yellow) versus  $1/r_{M-M}(A)$  Gas phase (B) SMD(CH<sub>3</sub>CN)





D



Ε



Figure S5. Spin density plots for A)  $[CuZnL_2B_0]^{4+}$ , B)  $[CuZnL_2B_1]^{4+}$ , C)  $[CuZnL_2B_2]^{4+}$ , D)  $[CuZnL_2B_3]^{4+}$  and E)  $[CuZnL_2B_4]^{4+}$ . Corresponding spin populations are indicated.

$$|Cu_{2}L_{2}UB_{n}|^{4+}$$

$$|Cu_{2}L_{2}UB_{n}|^{4+}$$

$$|Cu_{2}L_{2}UB_{n}|^{4+}$$

Scheme S1. A model bimetallic system with a conjugated, alkynyl diamine linker, denoted by  $[Cu_2L_2{}^uB_n]^{4+}$  ('u' = unsaturated).



Figure S6. Comparison of the linear fits of the computed reduction potentials for [Cu<sub>2</sub>L<sub>2</sub>B<sub>n</sub>]<sup>4+</sup>

(orange) and  $[Cu_2L_2{}^uB_n]^{4+}$  (brown) versus  $1/r_{Cu-Cu}$  in the (A) gas phase, and in (B) SMD(CH<sub>3</sub>CN).



**Figure S7.** Effect of change in coordination sphere on  $E_1^\circ$  vs  $1/r_{M-M}$  in the (A) gas phase, and (B) SMD(CH<sub>3</sub>CN); where DPA (L) in Cu<sub>2</sub>L<sub>2</sub>B<sub>n</sub> is replaced by N-methyl-bis(2-pyridyl methyl) amine (L\*), or by 2,2':6',2"-Terpyridine (Tpy).

**Table S2.** Comparison of bond distances (in Å) between the single crystal structure and the DFT optimised geometry for  $[Cu_2L_2B_4]^{4+}$  and  $[Cu_2L_2B_8]^{4+}$ .

| S. No. | Bond   | $[Cu_2L_2B_4](ClO_4)_4$ |       | [Cu2L2B8](ClO4)4 |       |  |
|--------|--------|-------------------------|-------|------------------|-------|--|
|        |        | scXRD                   | DFT   | scXRD            | DFT   |  |
| 1      | Cu1-N1 | 1.978(4)                | 2.043 | 2.031(5)         | 2.047 |  |
| 2      | Cu1-N2 | 2.019(10)               | 2.062 | 2.014(7)         | 2.060 |  |
| 3      | Cu1-N3 | 1.985(4)                | 2.041 | 2.041(5)         | 2.042 |  |
| 4      | Cu1-N4 | 1.977(8)                | 2.104 | 2.003(5)         | 2.066 |  |

Table S3. Crystallographic information for the Cu complexes  $[Cu(L)(MeCN)](ClO_4)_2$ ,  $[Cu_2L_2B_4](ClO_4)_4$  and  $[Cu_2L_2B_8](ClO_4)_4$  [L = DPA].

| Identification code | [Cu(L)(MeCN)](ClO <sub>4</sub> ) <sub>2</sub> | $[Cu_2L_2B_4](ClO_4)_4$                                                                        | $[Cu_2L_2B_8](ClO_4)_4$            |
|---------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------|
| Empirical formula   | $C_{14}H_{16}Cl_2CuN_4O_8$                    | C <sub>28</sub> H <sub>38</sub> Cl <sub>4</sub> Cu <sub>2</sub> N <sub>8</sub> O <sub>16</sub> | $C_{36}H_{52}Cl_4Cu_2N_{10}O_{16}$ |
| Formula weight      | 502.75                                        | 1011.54                                                                                        | 1149.75                            |
| Temperature/K       | 150.00(10)                                    | 150.15                                                                                         | 150(2)                             |

| Crystal system                     | monoclinic                                           | triclinic                                               | monoclinic                                                                       |
|------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
| Space group                        | P2 <sub>1</sub> /c                                   | P-1                                                     | P2 <sub>1</sub> /c                                                               |
| a/Å                                | 8.3200(4)                                            | 8.0801(13)                                              | 17.628(4)                                                                        |
| b/Å                                | 31.0178(9)                                           | 8.3872(14)                                              | 8.5678(18)                                                                       |
| c/Å                                | 8.4615(4)                                            | 16.325(3)                                               | 15.791(3)                                                                        |
| α/°                                | 90                                                   | 82.830(4)                                               | 90                                                                               |
| β/°                                | 119.057(6)                                           | 75.916(4)                                               | 93.215(6)                                                                        |
| γ/°                                | 90                                                   | 61.704(4)                                               | 90                                                                               |
| Volume/Å <sup>3</sup>              | 1908.80(17)                                          | 944.8(3)                                                | 2381.2(8)                                                                        |
| Z                                  | 4                                                    | 1                                                       | 2                                                                                |
| $\rho_{calc}g/cm^3$                | 1.749                                                | 1.778                                                   | 1.604                                                                            |
| μ/mm <sup>-1</sup>                 | 1.476                                                | 1.492                                                   | 1.196                                                                            |
| F(000)                             | 1020                                                 | 516.0                                                   | 1184.0                                                                           |
| Crystal size/mm <sup>3</sup>       | $0.102 \times 0.063 \times 0.054$                    | 0.413 × 0.321 × 0.158                                   | 0.097 × 0.071 ×<br>0.054                                                         |
| Radiation                          | MoKα ( $\lambda = 0.71073$ )                         | MoKα ( $\lambda = 0.71073$ )                            | MoKα ( $\lambda = 0.71073$ )                                                     |
| 2Θ range for data collection/°     | 5.254 to 59.056                                      | 5.146 to 50.05                                          | 4.628 to 50.054                                                                  |
| Index ranges                       | $-7 \le h \le 11, -34 \le k \le 41, -11 \le 1 \le 7$ | $-8 \le h \le 9, -9 \le k \le 9,$<br>$-18 \le 1 \le 19$ | $-20 \le h \le 20, -10 \le k$<br>$\le 10, -18 \le l \le 17$                      |
| Reflections collected              | 17329                                                | 13716                                                   | 29525                                                                            |
| Independent reflections            | $4412 [R_{int} = 0.0662, R_{sigma} = 0.0732]$        | $3320 [R_{int} = 0.1597, R_{sigma} = 0.1580]$           | $\begin{array}{c} 4205 \; [R_{int} = 0.1656, \\ R_{sigma} = 0.0973] \end{array}$ |
| Data/restraints/param eters        | 4412/0/263                                           | 3320/15/248                                             | 4205/67/331                                                                      |
| Goodness-of-fit on F <sup>2</sup>  | 1.049                                                | 1.052                                                   | 1.053                                                                            |
| Final R indexes [I>=2σ (I)]        | $R_1 = 0.0556, WR_2 = 0.1206$                        | $R_1 = 0.1010, WR_2 = 0.2081$                           | $R_1 = 0.0689, wR_2 = 0.1601$                                                    |
| Final R indexes [all data]         | $R_1 = 0.0928, WR_2 = 0.1394$                        | $R_1 = 0.1672, WR_2 = 0.2360$                           | $R_1 = 0.1207, wR_2 = 0.1895$                                                    |
| Largest diff.<br>peak/hole / e Å-3 | 0.74/-0.85                                           | 1.21/-0.83                                              | 0.67/-0.73                                                                       |





 $\label{eq:Figure S8.} Figure S8. \ \ \text{Calculated} \ \ \text{and} \ \ \text{experimental powder} \ \ PXRD \ \ diffraction \ \ patterns \ \ \text{for} \ \ A) \\ [Cu(DPA)(MeCN)](ClO_4)_{2,} \ B) \ [Cu_2L_2B_4](ClO_4)_{4} \ \text{and} \ C) \ [Cu_2L_2B_8](ClO_4)_{4}.$ 





Figure S9. ESI-HRMS data for [Cu(DPA)(MeCN)](ClO<sub>4</sub>)<sub>2</sub>







Figure S10. FTIR spectra of A)[Cu(DPA)(MeCN)](ClO<sub>4</sub>)<sub>2</sub>, B) [Cu<sub>2</sub>L<sub>2</sub>B<sub>4</sub>](ClO<sub>4</sub>)<sub>4</sub> and C) [Cu<sub>2</sub>L<sub>2</sub>B<sub>8</sub>](ClO<sub>4</sub>)<sub>4</sub>.



Figure S11. scXRD structure for [Cu(DPA)(MeCN)](ClO<sub>4</sub>)<sub>2</sub>



Figure S12. Benchmarking of reduction potential calculations: DFT-computed  $E_1^0$  and  $E_2^0$  with different density functionals against experimentally determined reduction potentials for two analogous systems, viz. a dicopper  $\mu$ -alkynyl complex<sup>[11]</sup> (1), and a dicopper corrole complex<sup>[12]</sup> (2).

Scheme S2. Structures of monomeric Cu(II) complexes 3,4<sup>[13]</sup>,5<sup>[14]</sup> and 6<sup>[15]</sup> used for benchmarking

the DFT methods.

**Table S4.** Functional dependence of the DFT-computed redox potentials (vs.  $Fc^{+/0}$ ) for the systems listed in Scheme S2. All the measured  $E_{1/2}$  values were reported in CH<sub>3</sub>CN, unless otherwise noted.

|          |                                      | Density Functional |       |       |       |
|----------|--------------------------------------|--------------------|-------|-------|-------|
| System # | Experimental E <sub>1/2</sub> (in V) | BP86               | M06   | B3P86 | B3LYP |
| 3        | -0.51                                | -0.51              | -0.14 | -0.99 | -0.97 |
| 4        | -0.36                                | -0.45              | -0.06 | -0.93 | -0.87 |
| 5        | 0.10                                 | 0.21               | 0.37  | -0.41 | -0.42 |
| 6        | -0.96*                               | -0.85              | -0.47 | -1.35 | -1.26 |

<sup>\*</sup>both the experimental and computed values are in DMF.



Figure S13. Cyclic voltammogram of 4 mM solutions of  $[Cu_2L_2B_4]^{4+}$  (blue) and  $[Cu_2L_2B_8]^{4+}$  (red) in acetonitrile with a wider potential window. Scan rate = 100 mV/s.



**Figure S14.** Influence of different dielectrics on  $E_1^{\circ} - E_2^{\circ}$  as a function of  $r_{\text{Cu-Cu}}$  using the SMD solvation model.



Figure S15. Dependence of  $\triangle$ SCF energies as a function of n for the first and second reduction of  $[Cu_2L_2B_n]^{4+}$  on the density functional.