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1. Active Orbitals
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Figure S2. Molecular orbitals included in the active space for 5BrdCyd used for QM/MM calculations.

2. The Effective Spin—Orbit Couplings Expression

Spin-orbit couplings are obtained at the QM(CASPT2)/MM level within the atomic mean-

field (AMFI) approximation. The effective spin-orbit couplings are expressed as follows:

| <Y [HP 1y > |2+ | <y |HP Iy > |2+ | <yy|HS[Y; > |?
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in which ¥; and ¢; are the perturbatively modified electronic wave functions of the
corresponding singlet and triplet states; H;°, H;°, H;° are the x, y, and z components of

the spin-orbit operator.
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3.

Bond-Length Difference and Dihedral Angles of Minima and Conical

Intersections and Crossing Points
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Figure S3. QM(CASSCF)/MM computed bond-length difference (in A) of excited-state minima
compared with the counterparts of the So minimum SO-MIN (a) for 5CldCyd and (c) for 5BrdCyd. The
positive and negative values mean they are longer and shorter than those of SO-MIN, respectively.

Bond-length difference (in A) of crossing structures compared with the counterparts of the
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corresponding excited-state minimum (b) for 5CIdCyd and (d) for 5BrdCyd, respectively.
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Figure S4. QM(CASSCF)/MM computed dihedral angles (in °) of minima and conical intersections and

crossing points (a and b) for 5CldCyd and (c and d) for 5BrdCyd, respectively.
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Tables

Table S1 Computed vertical excitation energies (in eV) of the low-lying excited singlet states at the SO-

MIN of 5CIC/5BrC and 5CICyd/5BrCyd in gas phase and in aqueous solution, and the experimental

absorption maxima (in eV [nm]) of the lowest-energy absorption bands in aqueous solution

Computed Values? Exp.?
gas water water
5CIC/5BrC 4.58/4.56 4.66/4.64
5CICyd/5BrCyd 4.66/4.64 4.69/4.66 4.32 [287]/4.30 [288]

a.

J. Phys. Chem. B 2020, 124, 2560-2567.
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Table S2 Computed vertical excitation energies (in eV [nm]) of the S; state at the SO-MIN of 5mC? and
5hmC? in gas phase, and 5mdCyd®<, 5ShmdCyd®, 5fdCyd®, and S5cadCyd® in aqueous solution
Computed Values Computed Values

Sa(mm’) Sy(rrt’)
5mC? 4.77 [260] 5fdCyd® 4.36 [284]
5hmC? 4.79 [259] S5cadCyd® 4.46 [278]
5mdCyd® 4.54 [273] 5mdCyd¢ 4.19 [296]
ShmdCyd® 4.56 [272]

a. J. Phys. Chem. B 2018, 122, 10424-10434.
b. J. Phys. Chem. Lett. 2021, 12, 11070-11077.
c. J.Am. Chem. Soc. 2017, 139, 7780-7791.

Table S3 Computed adiabatic excitation energies (in kcal/mol [eV]) of S1-MIN, T1-MIN, $150, and S1T1
of 5mC?, 5hmC?, 5fC° and 5caC® in gas phase, and 5mdCyd<¢, 5ShmdCyd¢, 5fdCyd¢, and 5cadCyd° in

aqueous solution

S1-MIN T1-MIN 5150 S1T1
5mC? 96.68 [4.19] 78.37 [3.40] 100.67 [4.37] 115.25 [5.00]
5hmC? 93.11 [4.04] 77.51[3.36] 109.23 [4.74] 98.16 [4.26]
5fdCP 86.99 [3.77] 77.50 [3.36] 103.13 [4.47] 97.97 [4.25]
5cadCb 94.89 [4.11] 80.38 [3.49] 105.13 [4.56] 101.28 [4.39]
5mdCyd° 81.9 [3.55] 60.9 [2.64] 89.9 [3.90] -
ShmdCyd 86.5 [3.75] 70.3 [3.05] 93.4 [4.05] -
5fdCyd° 77.7 [3.37] 61.8 [2.68] 62.3 [2.70] -
5cadCyde 95.2 [4.13] - 92.2 [4.00] -
5mdCyd® 91.8 [3.98] - 78.4 [3.40] -

anoa

J. Phys. Chem. B 2018, 122, 10424-10434.
J. Phys. Chem. B 2018, 122, 2704-2714.

J. Phys. Chem. Lett. 2021, 12, 11070-11077.
J. Am. Chem. Soc. 2017, 139, 7780-7791.
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