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1. The performance of the neural-network potentials on the Au compact nanowire
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We further test the performance of the neural-network potentials (NNPs) 

developed by Andolina and coworkers on the Au compact nanowire.1 Taking the 

starting configuration, the relaxed structure and the one forming a monatomic chain as 

typical examples, we compute the total energy and the atomic forces employing both 

the NNP and DFT calculations implemented in VASP. The input parameters for DFT 

calculations are the same as those used for generating the NNP training database.1 

Considering that Andolina and coworkers have demonstrated the excellent performance 

of the developed NNP on bulk gold, we remove most of the gold atoms in the left and 

right electrodes and only keep two monatomic layers sandwiching the central nanowire, 

as shown in Figure S1. The mean absolute errors on the atomic forces computed using 

the NNP and DFT calculations are on the order of 10-2 eV/Å for these three typical 

configurations (see Table S1), confirming its applicability to modeling the structural 

evolution of gold nanowires during the stretching process.

Figure S1 Three typical configurations of the Au compact nanowire used for testing the NNP 
performance: (a) the starting configuration, (b) the relaxed structure, and (c) the one forming a 
monatomic chain.

Table S1 The mean absolute of errors (MAE) on the atomic forces computed using the NNP and 
DFT calculations

MAE (unit: eV/Å)

The staring configuration 23.58 10

The relaxed structure 25.16 10

The monatomic-chain configuration 24.18 10

2. K-points and basis sets used in the NEGF+DFT calculations
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Figure S2 Comparison of the equilibrium transmission spectra of typical snapshots of Au (a) and 
Ag (b) nanowires calculated with different k-points and basis sets. Inset: atomic structures used to 
calculate the transmission spectra.

We test the influences of k-points and basis sets on the calculated transmission 

spectra of gold and silver nanowires. As shown in Figure S2, the transmission around 

the Fermi level is essentially identical for different k-points and basis sets. Because we 

are mainly interested in the zero-bias conductance of gold and silver nanowires, which 

is equal to the product of the conductance quantum G0=2e2/h and the transmission 

coefficient at the Fermi level. Therefore, we choose to use the 111 k-points and the 

SZP basis set for our NEGF+DFT calculations considering the computational 

efficiency.
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3. The relation between the zero-bias junction conductance and the transmission 

coefficient at the Fermi level

As we know, the current-voltage (I-V) characteristics of a junction can be obtained 

from the Landauer formula:2
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where e is the elementary charge and h is Planck’s constant, T(E) is the transmission 

function of the junction.  is the Fermi-Dirac distribution function in 
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which KB is the Boltzmann constant and T is the temperature. The local quasi-Fermi 

levels 1 and 2 of the left and right electrodes are respectively defined as 

 and , where EF is the Fermi level of the junction at 
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equilibrium and V is the applied bias. When a small bias voltage V is applied, the 

resulting current through the junction can be written to first order as 
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so that the conductance of the junction is given by
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In the limit of zero temperature, the conductance is reduced to G=G0T(EF) where 

 is the quantum unit of conductance.
𝐺0 =

2𝑒2
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4. Simulated conductance profile of the silver compact nanowire in one single MD 

trajectory

Figure S3 Typical conductance profile during the pulling of the silver compact nanowire.

5. The performance of the fully connected neural network on the prediction of the 

conductance of Au full nanowires

We have also tested the performance of the fully connected (FC) neural network 

on the prediction of the conductance of Au full nanowires, and the model architecture 

of the FC neural network is the same as that employed by Bürkle and coworkers for the 

prediction of the conductance of potassium nanowires.3 In contrast to the transformer-

based neural network, the performance of the FC neural network strongly depend on 

the setting of hyperparameters. When the learning rate is greater than 310-4, the FC 

neural network cannot converge well. The learning curve with the learning rate of 510-

4 is shown in Figure S4(a), from which we can see the loss function fluctuates heavily. 
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We have selected many intermediate models at different training steps and tested their 

performance on the prediction of the conductance of Au full nanowires. Simulated 

conductance histograms delivered by three of them with relatively good performance 

are shown in Figures S4b-S4d, in which the conductance values of MD snapshots of 

one widened and three elongated gold full nanowires (28,000 structures for each 

starting structure) are predicted using these three models. Obviously, the consistency 

among these simulated conductance histograms is worse than that predicted with the 

transformer-based neural network (see Figures 4c and 4d). Even for the best 

intermediate FC model obtained at the training step of 2500, the MAE values on the 

test set of the Au compact wire and a small dataset of the gold full wire with an 

increased length of 2.29 nm are respectively increased to be 0.09 G0 and 0.15 G0, both 

larger than those (0.06 G0 and 0.09 G0) given by the transformer-based neural network. 

Figure S4 (a) Learning curve of the training loss of the FC model with a learning rate of 510-4, the 
vertical scale is logarithmic. Simulated conductance histograms constructed using the conductance 
values predicted for three longer and one wider Au full nanowires using the intermediate FC models 
at the steps of 5000 (b), 1800 (c) and 2500 (d). The lengths of these three elongated Au full wires 
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are 2.29 nm (blue line), 2.70 nm (yellow line) and 3.53 nm (red line), respectively. The widened Au 
full nanowire consists of 6 monatomic layers with a 44 in-plane supercell (green line). 

Then we decrease the learning rate to 110-4, and the learning curve and the 

simulated conductance histograms are shown in Figure S5. As we can see, the model 

can converge well; unfortunately, the prediction results become much worse. It seems 

that the FC model is caught in a local optimality. When the learning rate is further 

decreased to 110-5, the model performance is even worse.

Figure S5 (a) Learning curve of the FC model trained with a learning rate of 110-4, the vertical 
scale is logarithmic. (b) Simulated conductance histograms constructed with conductance values of 
four Au full nanowires predicted using the FC model trained with a learning rate of 110-4. 

In contrast, the transformer-based neural network is very stable. As shown in 

Figure S6, the model converges very well at the learning rate of 110-5 and the 

simulated conductance histograms for all the Au full nanowires are also consistent (see 

Figures 4(c) and 4(d)), demonstrating the robustness of the transformer-based neural 

network.
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Figure S6 Learning curve of the training loss of the transformer-based neural network with a 
learning rate of 110-5, the vertical scale is logarithmic.
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