The Critical Role of Fe 3d-N 2p Orbital Hybridization in Ammonia

Decomposition on graphene-supported Fe₆N_x Clusters: A DFT study

Kaixun Yi^a, Fengyun Ding^b, Habibullah^b, Wanglai Cen^{b*}, Tao Gao^{a*}

^aInstitute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

^bInstitute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, China.

^{*}Corresponding authors:

E-mail addresses: cenwanglai@scu.edu.cn(Wanglai Cen), gaotao@scu.edu.cn(Tao Gao).

Fig. S1. AIMD simulations of (a) Fe_6N_0 , (b) Fe_6N_1 , (c) Fe_6N_2 , (d) Fe_6N_0 @graphene, (e) Fe_6N_1 @graphene and (f) Fe_6N_2 @graphene at 823 K. The C, N, and Fe atoms are colored in gray, blue, and orange, respectively.

Fig. S2. Differential charge density plots of (a) Fe_6N_0 , (b) Fe_6N_1 , (c) Fe_6N_2 , (d) Fe_6N_3 , (e) Fe_6N_0 @graphene, (f) Fe_6N_1 @graphene, (g) Fe_6N_2 @graphene and (h) Fe_6N_3 @graphene. The isosurface level is set at ± 0.01 a.u. Green regions correspond to electron accumulation and red regions represent electron depletion. Color codes follow Fig. S1.

Fig. S3. Configurations and adsorption energies of NH_3 at additional adsorption sites. Color codes follow Fig. S1, with H atoms depicted in white.

Fig. S4. d-projected density of states (PDOS) of Fe in (a) Fe_6N_0 , (b) Fe_6N_1 and (c) Fe_6N_2 configurations. ε_d^c denotes the d-band center. The purple dashed line denotes the Fermi level set at 0 eV.

Fig. S5. Plane-averaged charge density difference plot along the z-axis for (a) Fe_6N_0 , (b) Fe_6N_1 , (c) Fe_6N_2 , (d) Fe_6N_0 @graphene, (e) Fe_6N_1 @graphene and (f) Fe_6N_2 @graphene. Color codes follow Fig. S1.

Fig. S6. Optimized adsorption configurations for (a) NH_2 , (b) NH, and (c) 2N. Color codes follow Fig. S2.

Fig. S7. Transition states (TS) for (a) $NH_3^* \rightarrow NH_2^* + H^*$, (b) $NH_3^* \rightarrow NH^* + H^*$, (c) $NH^* \rightarrow N^* + H^*$ and (d) $N^* + N^* \rightarrow N_2^*$. Color codes follow Fig. S2.

Fig. S8. Reaction pathways using Initial/transition states (IS/TS) as the start/end (left), and transition/final states TS/FS as the start/end (right), respectively. (a) Fe_6N_0 , (b) Fe_6N_2 , (c) Fe_6N_0 @graphene and (d) Fe_6N_2 @graphene.

Table S1. Calculated energies and magnetic moments for free-standing and graphene-supported
Fe_6N_x (x=0~2) clusters under the default (1 μ B/atom) and the high-spin (3 μ B/atom) configurations

Structure /Initial magnetic	Energy(eV)	Convergent magnetic	
moments(µB/atom)		moments(µB)	
Fe ₆ N ₀ /1	-36.352	20.000	
Fe ₆ N ₀ /3	-36.352	20.000	
Fe ₆ N ₁ /1	-44.787	17.000	
Fe ₆ N ₁ /3	-44.787	17.000	
Fe ₆ N ₂ /1	-54.066	18.000	
Fe ₆ N ₂ /3	-54.066	18.000	
Fe ₆ N ₀ @graphene/1	-627.785	18.019	
Fe ₆ N ₀ @graphene/3	-627.785	18.019	
Fe ₆ N ₁ @graphene/1	-637.334	15.009	
Fe ₆ N ₁ @graphene/3	-637.334	15.008	
Fe ₆ N ₂ @graphene/1	-646.221	14.000	
Fe ₆ N ₂ @graphene/3	-646.221	14.000	

Table S2. Activation energy barriers (E_b , eV) and reaction energies (E_r , eV) for NH₃ decomposition on free-standing and graphene-supported Fe₆ clusters with varying numbers of pre-adsorbed N atoms, * denotes an adsorbed species.

Reactions	Fe ₆ N ₀ /Fe ₆ N ₀ @graphene		Fe ₆ N ₁ /Fe ₆ N ₁ @graphene		Fe ₆ N ₂ /Fe ₆ N ₂ @graphene	
	E_{b}	$E_{\rm r}$	E_{b}	$E_{\rm r}$	E_{b}	$E_{\rm r}$
$NH_{3+*}^{*} \rightarrow NH_{2+H}^{*}^{*}$	0.80/0.84	-0.77/-1.15	0.65/0.79	-0.75/-0.35	0.88/1.16	-0.65/-0.40
$NH_{2+}^{*}*\longrightarrow NH^{*}+H^{*}$	1.40/0.88	-0.22/-1.05	1.22/1.28	-0.45/-0.12	1.54/1.43	-0.11/0.40
$NH^* + * \longrightarrow N^* + H^*$	1.12/0.90	-0.10/-0.50	1.83/1.24	0.16/0.18	1.37/1.23	-0.40/-0.01
$N^* + N^* \longrightarrow N_2^* + *$	2.08/2.53	0.61/0.96	2.17/1.97	0.99/-0.01	2.28/1.39	0.32/-0.32