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In this ESI, additional information is provided on the phase-field simulations presented in the main document, along
with associated analysis methods. S0 provides a concise description of the phase-field model and its numerical imple-
mentation, while S1 contains a detailed overview of the simulation parameters, organised per Results section. In S2, the
calculation procedure for the interfacial tension is explained and discussed. S3 gives supplementary results from phase-
field simulations to support certain statements made in the main document. Finally, S4 briefly summarises the analysis
method for obtaining the pore size profiles in both experimental and simulated bijel morphologies.

S0: Model description
As a preamble to this section, a list with the nomenclature of the relevant simulation parameters is shown in Table 1.

Table 1: Nomenclature of some relevant simulation parameters
Symbol Meaning

φ Volume fraction (oil)
φ0 Initial volume fraction (oil)
φs Volume fraction (solvent)
φsc Volume fraction at critical point (solvent)
χ Interaction parameter (oil-water)
χ0 Interaction parameter (oil-water, no solvent)
χsc Interaction parameter at critical point
M̂ Dimensionless mobility (oil)
κ̂ Dimensionless gradient energy coefficient
Ψ Dimensionless free energy density
t̂ Dimensionless time

∆t̂ Simulation time-step
N Total simulation steps
ŷ Dimensionless vertical position

∆ŷ Vertical lattice spacing
σ Dimensionless interfacial tension
σc Critical interfacial tension

In the main document, the nondimensionalised equations
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= M̂∇̂

2(
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2
φ) (1)

∂φs
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were solved via finite difference methods on a 200x200 regular square lattice. Spatial discretisation occurred via a centred
finite difference with a 5-point stencil, whereas the forward Euler method was used for temporal discretisation.
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For a regular solution, the dimensionless free energy density Ψ in Eq. (1) is given by

Ψ = φ lnφ +(1−φ) ln(1−φ)+χφ(1−φ) (3)

which couples the phase separation of Eq. (1) to the solvent diffusion of Eq. (2) through the oil-water interaction
parameter χ

χ(φs) = χ0 − (χ0 −χc)
φs

φsc
. (4)

With χsc = 2.0 being set by the regular solution model, choosing χ0 = 3.0 and φsc = 0.50 places the critical point in the
associated φ/φs phase diagram at the composition φ = 0.50/φs = 0.50, qualitatively mimicking the phase diagram of a well-
known STrIPS precursor mixture (diethyl phthalate/water/1-propanol). Following the experimental STrIPS procedure,
simulations (except for section 4.1) were initiated with this critical composition. To reflect the presence of small, thermal
inhomogeneities in the composition, the initial state of the system was seeded with random noise uniformly sampled from
an [−0.01,0.01] interval. As such, the initial composition of the simulations is given by φ0 = 0.50±0.01 and φs = 0.50.

Boundary conditions
For the results presented in the main manuscript, Eq. (1) and Eq. (2) are numerically solved with a variety of different
boundary conditions. While these boundary conditions vary per section, and can also differ between Eq. (1) and Eq.
(2), they all are enforced through the second order spatial derivative. Therefore, the boundary conditions imposed
on Eq. (1) and Eq. (2) in this work can all be classified as so-called (higher-order) ”Neumann boundary conditions”.
Depending on the implementation, the text in the main manuscript distinguishes between ”periodic” and ”Neumann”
boundary conditions. The differences between these categories, as well as the specific implementations for Eq. (1) and
Eq. (2), are best illustrated with an example.

With a centred finite difference for the spatial discretisation, the second order derivative of φ with respect to the
vertical position ŷ is approximated via

∂ 2φ(ŷ)
∂ ŷ2 ≈ φ(ŷ+∆ŷ)+φ(ŷ−∆ŷ)−2φ(ŷ)

(∆ŷ)2 (5)

At the upper boundary of the simulation domain (ŷ = 0), boundary conditions can be incorporated into the expression of
this second order derivative

∂ 2φ

∂ ŷ2

∣∣∣∣
ŷ=0

≈ φ(∆ŷ)+φ(−∆ŷ)−2φ(0)
(∆ŷ)2 (6)

In particular, boundary conditions can be imposed through modification of the value of φ(−∆ŷ), which represents a virtual
lattice point located directly above the upper boundary. For a ”periodic” boundary condition, this virtual lattice point is
shifted to the bottom boundary of the simulation domain. In a lattice with Ny vertical points, this condition thus imposes
φ(−∆ŷ) = φ([Ny −1]∆ŷ) and consequently

∂ 2φ

∂ ŷ2

∣∣∣∣
ŷ=0

≈
φ(∆ŷ)+φ([Ny −1]∆ŷ)−2φ(0)

(∆ŷ)2 (7)

In contrast, a ”Neumann” boundary condition imposes a certain flux over the upper boundary. Both the oil/water and
the solvent can be prevented from leaving the simulation domain by enforcing a situation with zero flux in the respective
component over the boundary. This ”zero flux” condition is achieved by setting φ(−∆ŷ) = φ(0) and therefore

∂ 2φ

∂ ŷ2

∣∣∣∣
ŷ=0

≈ φ(∆ŷ)−φ(0)
(∆ŷ)2 (8)

Alternatively, the removal of solvent from the simulation domain is achieved by allowing a non-zero flux of solvent over
the upper boundary. The extent of this flux is controlled by the value of φ BC

s , representing a constant solvent fraction
outside the simulation domain. Consequently, φs(−∆ŷ) = φ BC

s and the boundary condition becomes

∂ 2φs

∂ ŷ2

∣∣∣∣
ŷ=0

≈ φs(∆ŷ)+φ BC
s −2φs(0)

(∆ŷ)2 (9)

For the simulations presented in the main document, ”periodic” boundary conditions were used to solve the Cahn-
Hilliard equation (Eq.(1)) in section 4.1. For the simulation of the STrIPS process, both ”flux” and ”zero flux” boundary
conditions were used to model the solvent diffusion via Eq. (2), representing the presence of either an ambient phase
or a solid substrate. In these cases, phase separation was modelled by solving the Cahn-Hilliard equation with ”zero
flux” boundary conditions. Consequently, for these simulations exchange with the ambient phase is limited to the solvent
fraction φs only.
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S1: Simulation parameters
Model validation
For the validation of the phase-field model, as described in section 4.1 of the main document, the initial composition φ0/φs
is varied over the different regions in the φ/φs phase diagram. The chosen compositions, along with the corresponding
value of χ (in accordance with Eq. (4)), are listed in Table 2. Additionally, the table lists the binodal compositions φbin
that were used for the creation of compositional nuclei in the metastable region of the phase diagram. For all simulations
in this region, 75 of such nuclei were placed.

Table 2: Initial precursor compositions for the validation of the phase-field model. Note that only the compositions on the
oil-poor side of the phase diagram are listed (φ ≤ 0.50). For the oil-rich side, the compositions can simply be calculated by
making use of the symmetry of the phase diagram (φ ′ = 1−φ). All simulations were performed with M̂ = 1 and κ̂ = 1 for
∆t̂ = 0.01

χ φs φ0 (±0.01) φbin
2.1 0.45 0.25/0.35/0.45/0.50 0.69
2.2 0.40 0.18/0.30/0.40/0.50 0.75
2.4 0.30 0.13/0.25/0.35/0.45/0.50 0.83
2.6 0.20 0.08/0.20/0.30/0.40/0.50 0.88
2.8 0.10 0.05/0.15/0.30/0.40/0.50 0.91
3.0 0 0.03/0.15/0.30/0.40/0.50 0.93

Simulation of STrIPS

Table 3: Relevant simulation parameters for the described phase-field modelling of the STrIPS process, listed per section
of the main document Results. Any (-) entry indicates an extension of the value listed earlier in the column.

Section M̂ κ̂ σc φ BC
s ∆t̂ N

4.2 0.01 0.50 1.00 0 0.50 30000
4.3 0.01 0.50 1.00 - 0.50 40000

- 1.00 1.21 - - -
- 1.50 1.38 - - -

0.05 0.50 0.69 - 0.25 80000
- 1.00 0.70 - - -
- 1.50 0.70 - - -

0.50 0.50 0.30 - 0.02 800000
- 1.00 0.30 - - -
- 1.50 0.30 - - -

4.4 0.01 0.50 0.25 - 0.25 80000
- - 0.50 - - -
- - 0.75 - - -
- - 1.00 - - -
- - 1.25 - - -
- - 1.50 - - -
- - 1.75 - - -

4.5 0.01 0.50 1.00 0 0.50 25000
- - - 0.10 - -
- - - 0.20 - -
- - - 0.30 - -
- - - 0.40 - -

For the simulation of the STrIPS process, covered in sections 4.2-4.5 of the main document, the relevant simulation
parameters are listed in Table 3. In these simulations, phase separation is arrested when the calculated interfacial tension
σ exceeds the critical value σc. This is achieved by locally multiplying the relative mobility M̂ with a factor 10−6 in every
region where the condition σ ≥ σc is met.

As can be seen in the Table, the specific value of σc varies between simulations, being mainly dependent on the relative
mobility M̂ and the gradient energy coefficient κ̂. Specifically, σc is determined based on profiles of the average interfacial
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Figure 1: Profiles of the average interfacial tension (IFT) σav over the course of the STrIPS simulation for different com-
binations of the relative mobility M̂ and gradient energy coefficient κ̂. The onset and subsequent progression of phase
separation throughout the system causes an increase in σav. This increase eventually tapers off, with σav reaching a some-
what constant value. This is consistent with the separated phases reaching their equilibrium compositions throughout the
entire simulation domain.

tension σav over the course of the STrIPS simulation. These profiles, calculated for different combinations of M̂ and κ̂, are
depicted in Figure 1.

As can be seen from the profiles, the onset of phase separation induces an increase in the average interfacial tension
σav. As phase separation progresses through the system, the average interfacial tension increases. Eventually, phase sepa-
ration will have occurred throughout the entire system, quickly followed by the formed phases reaching their equilibrium
compositions. Accordingly, σav plateaus, reaching a somewhat constant value. The height of this σc plateau generally
increases with κ̂, consistent with a stronger energy penalty for interface formation.

The values of σc listed in Table 3 are based on the plateau value of σav. In particular, an initial value of σc was chosen
as half of the plateau σav. In case this did not result in the arrest of phase separation over the entire system (i.e. locally
σ did not reach this value everywhere), the value of σc was systematically lowered. The listed values in Table 3 are the
maximum σc where full arrest of phase separation consistently occurred over the entire simulation domain.

S2: Calculation of the interfacial tension
As mentioned in S1, the simulations of the STrIPS process presented in the main document require the continuous cal-
culation of the interfacial tension σ . For a 1D interface, this interfacial tension can be readily calculated in accordance
with

σx = κ

∫
∞

−∞

dx
[

∂φ

∂x

]2

(10)

The relation between the interfacial tension from Eq. (10) and the interaction parameter χ (and by extension the solvent
fraction φs) becomes readily apparent when considering that Eq. (10) effectively states that σx ∝ (∆φ)2/λ , where ∆φ is
the difference in φ over an interface with a width of λ . As illustrated by the equilibrium interfaces plotted in Figure
2A, an increasing value of the interaction parameter χ creates a sharper interface by increasing the difference ∆φ whilst
decreasing the width λ . Since Eq. (10) indicates that sharper interfaces are associated with a higher interfacial tension,
increasing the value of χ thus increases the interfacial tension σx.

In the presented model, the solvent fraction φs is linearly related to the interaction parameter via Eq. (4). Consequently,
the found relation between the interaction parameter χ and the interfacial tension σx can be directly extended to the
solvent fraction φs. This is illustrated in Figure 2B, showing the interfacial tension of 1D interfaces, calculated via Eq. (10)
with χ0 = 3.0 and φsc = 0.50, for different values of the solvent fraction φs. These plots readily demonstrate that decreasing
the solvent fraction φs, as happens during the STrIPS process, increases the value of the interfacial tension σx. When the
value of σx exceeds a certain set critical value σc, indicated by the red dotted line in Figure 2B, phase separation could be
arrested through the irreversible attachment of particles to the interface.

However, as illustrated by the inset of Figure 2A, the 2D simulations presented in the main manuscript generally involve
multiple interfaces. Additionally, these interfaces can be over perpendicular directions (x̂ and ŷ). In these simulations, this
is addressed by calculating a local measure of the interfacial tension σ for each lattice point via

σ =
√

σxσy (11)
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Figure 2: A) Equilibrium shapes of single 1D interfaces in φ for different values of the interaction parameter χ. The
inset shows a cross-section of an oil-rich domain from a 2D simulation, illustrating the presence of multiple (double) 1D
interfaces for a single domain. B) The interfacial tension σx, calculated via Eq. (10), over both single and double interface
systems for different values of the solvent fraction φs . The horizontal, dotted red line represents a chosen value of σc.

where σx and σy are obtained in accordance with Eq. (10) through numerical integration over the entire simulation
domain in their respective direction. Consequently, the calculated measure σ does not reflect the interfacial tension of a
single interface, but rather is a composite measure that has contributions from multiple interfaces in multiple directions.
However, as illustrated by the plot of the ”double interface” case in Figure 2B, the behaviour of σ for multiple interfaces
with respect to φs is qualitatively similar to that of the ”single interface”. To obtain equivalent behaviour in terms of
arresting phase separation, only a different value of σc is required. This calculation method does have the condition,
however, that the moment of arresting phase separation can not be unambiguously assigned to a single value of φs, as the
instant where σ ≥ σc becomes dependent on local conditions. Theoretically, this could be corrected for by separating and
averaging the contributions from the individual interfaces, but this is outside the scope of the current work.

S3: Supplementary simulation results

Boundary layer formation

In the main document, it is stated that the minimisation of gradient energy induces the formation of boundary layers
between regions of different composition. This principle is illustrated in Figure 3, showing the progress of phase separation
in systems that contain distinct domains of varying composition. For Figure 3A, a circular domain of composition φ = 0.52
is placed in a system with average composition φ = 0.50± 0.01. For Figure 3B, the system contains rectangular domains
with respective compositions of φ = 0.48±0.01, φ = 0.50±0.01 and φ = 0.52±0.01.

As can be seen in the Figure, both of these systems result in the formation of boundary layers over the course of the
simulation. The shape of the boundary layer is dictated by the shape of the interface delineating the regions of different
composition. For the circular and rectangular domains of Figures 3A and 3B, this corresponds to the formation of circular
and straight boundary layers, respectively.

There is one additional feature of note in the phase separation depicted in Figure 3. Namely, whereas the compositions
of the rectangular domains in Figure 3B contain small inhomogeneities (e.g. φ = 0.52± 0.01), the composition of the
circular domain in Figure 3A is fully homogeneous (φ = 0.52). Consequently, phase separation in the circular domain
of Figure 3A is directed purely by its interface with the rest of the system. This results in the progressive formation of
circular layers, finally giving rise to a morphology similar to concentric rings. In contrast, for Figure 3B the influence of
the interfaces between the different domains is limited to their direct vicinity, forming linear boundary layers. Further
away from the interfaces, phase separation occurs in a relatively isotropic fashion.
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Figure 3: Simulation of phase separation in systems with distinct domains of different compositions. In (A), a circular
domain of homogeneous composition φ = 0.52 is placed in a system of composition φ = 0.50± 0.01. In (B), the system
consists of rectangular domains with compositions of φ = 0.48±0.01, φ = 0.50±0.01 and φ = 0.52±0.01. All simulations
were performed with M̂ = 1 and κ̂ = 1 for a constant χ = 3.0.

Figure 4: Profiles of the solvent fraction φs over the simulation domain at different stages of the STrIPS simulation. Here,
the interface with the ambient phase is located at ŷ/L̂ = 0, whereas the solid substrate is located at ŷ/L̂ = 1.
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Figure 5: The image-analysis pipeline for calculating the pore size profiles of bijel morphologies. After importing the image
as a text file it is binarised and padded. During subsequent analysis, the image is scanned in the horizontal direction at
different depths ŷ/L̂. Each of these scans finds the total number of pores and their respective perpendicular dimensions d̂x
and d̂y, in addition to their average d̂av. By taking the mean over all pores in the scan, each depth ŷ/L̂ can be associated
with an average pore dimension d̂av.

Solvent profiles

In the main document, the observed morphologies of STrIPS bijels are explained through the concept of progressive phase
separation. This concept is strongly linked with the evolution of the local solvent fraction φs over the course of the
simulation. Therefore, Figure 4 shows profiles of φs over the simulation domain at different stages of the STrIPS process.

As can be seen in the Figure, the region directly adjacent to the ambient phase (ŷ/L̂ = 0) is quickly depleted of solvent.
As such, this region contains a relatively consistent, low level of solvent over the course of the entire simulation. Deeper
into the system there are greater gradients in φs. These gradients are maintained over the course of the simulation,
facilitating progressive phase separation. Even deeper, close to the interface with the solid substrate (ŷ/L̂ = 1), the solvent
profiles flatten out. Similar to the surface region, the deepest region of the system thus also experiences a relatively
homogeneous level of solvent, albeit much higher.

S4: Analysis method for pore size calculations
In the main document, profiles of the average pore size are shown over both the simulated and experimental bijel mor-
phologies. This section briefly describes the analysis method used to calculate these profiles.

Basic principles & Simulated morphologies

The basic principles underlying the used methodology are best explained through an example, here illustrated through
the analysis of a simulated bijel morphology. The general pipeline of the analysis process is summarised in Figure 5.

First, an image is imported in the form of a text file. The image is subsequently binarised, generally with a threshold
value of φ = 0.50. This is then followed by padding, where the image is artificially extended to prevent any issues caused
by overlap between the morphology and the image edges. After this preprocessing, the pore size analysis is performed
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Figure 6: Pore size profiles over the depth of the simulated morphology shown in Figure 5. In (A), the profiles of all three
calculated pore dimensions d̂x, d̂y and d̂av are depicted. In (B), the profile of the average pore size d̂av is fitted with a
quadratic polynomial, with the position of the maximum pore size indicated by the star marker.

over the image. This is done by slicing the image in the horizontal direction x̂ at different depths ŷ. For each slice, the
total number of pores, the lengths of the pores in the horizontal direction dx and the approximate positions of the pore
centres are determined. Starting from the positions of the pore centres, the lengths of the pores in the vertical direction
dy are then calculated. Consequently, each pore has two distinct dimensions associated with it, the perpendicular lengths
dx and dy. These perpendicular dimensions are then averaged in accordance with

dav =
dx +dy

2
(12)

The found values of dav are then in turn averaged over all pores in the slice, providing an effective measure for the mean
pore dimensions at that depth ŷ of the morphology.

After removing the artificial values introduced due to the image padding, the pore size profiles over the morphology
can be plotted. This is illustrated in Figure 6, with Figure 6A showing the profiles of the different pore sizes d̂x, d̂y and
d̂av over the depth of the morphology ŷ. Both the pore sizes d̂ and the depth ŷ are normalised with respect to the total
image length L̂. Finally, the profile of the average pore size d̂av is fitted with a quadratic polynomial and the position of
the maximum pore size extracted. This is illustrated in Figure 6B, with the position of the maximum pore size indicated
by the star marker.

Analysis details for simulated morphologies

In the main document, the pore size profiles of simulated morphologies are presented in sections 4.4 and 4.5. In both these
sections, each shown pore size profile is the result of analysing 20 distinct, simulated morphologies that were acquired
with the same simulation parameters (except the random seeding of the initial state φo). The pore size profiles of these 20
morphologies were averaged to yield the shown profile. The fitting of the quadratic polynomials occurred with respect to
this average pore size profile.

Finally, for the pore size profiles in section 4.4, a cut-off value of φ = 0.525 was used for binarisation instead of φ = 0.50.
Namely, it was found that using φ = 0.50 as the cut-off value did not sufficiently capture the deeper regions of the bijel
morphology for higher values of σc. For the sake of consistency, all morphologies in section 4.4 were thus analysed with
the cut-off value of φ = 0.525.

Experimental morphologies
The pore size analysis of the experimental STrIPS bijel morphologies, acquired via confocal microscopy, is performed
similarly to the simulated morphologies, albeit with more extensive image preprocessing.

The pipeline for the analysis of the experimental morphologies is shown in Figure 7. The raw confocal image is
first imported into the Fiji ImageJ software and the region of interest isolated. Afterwards, a bandpass filter is applied
through the FFT plugin, removing low frequency signal to enhance the image edges. The image is then binarised through
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Figure 7: Analysis pipeline for calculating the pore size profiles over experimental STrIPS bijel morphologies from confocal
images. First, the raw confocal image is imported into the Fiji ImageJ software and the region of interest isolated.
Following the application of a bandpass filter, the image is binarised and rotated such that the interface with the ambient
phase aligns with the upper image edge. The resulting image can be exported as a text file, which can subsequently be
analysed in a similar manner to the simulated bijel morphologies.

thresholding and rotated in such a manner that an interface with the ambient phase aligns with the upper image edge.
Exporting this binarised image as a text file, the experimental morphology can subsequently be analysed analogously
to the simulated morphologies, as described in the previous subsection. The results of this analysis, performed for the
experimental bijel morphology in Figure 7, are shown in Figure 8.
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Figure 8: Pore size profiles over the depth of the experimental STrIPS bijel morphology shown in Figure 7. In (A), the
profiles of all three calculated pore dimensions d̂x, d̂y and d̂av are depicted. In (B), the profile of the average pore size d̂av
is fitted with a quadratic polynomial, with the position of the maximum pore size indicated by the star marker.
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