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van der Waals Parameters: 

Atom Type σ (nm) ε (kJ mol-1) 

C 0.350 0.27614 

H 0.242 0.12552 

Si 0.339 2.44704 

O 0.307 0.71128 

 

Atomic partial charges for silanol groups 

Atom Charge (e) 

Si (Si-OH) 0.31 

O (O-H) -0.71 

H (H-O) 0.40 
Table S2: Force Field Parameters for Silica Surface. 

  

For silica surface, the charges on the bulk Si and O atoms of SiO2 crystal was set to zero. Furthermore, the 

methyl groups of the hydrophobic silica surfaces were given zero partial charge. This was done to ensure their 

truly hydrophobic nature. To generate topology for the silica slabs, the inbuilt “x2top” command of 

GROMACS was used, with bond lengths set to their default values, as obtained from Materials Studio 

database. Non-bonded parameters and partial charges were taken from Table S2. 

Force-Field Validation: 

The validation of the chosen parameters was done by estimating oil-water IFT values for different 

hydrocarbons used in this work. The protocol developed by Muller et al1 was implemented. Initially a 5x5x4 

nm3 box was generated with a single hydrocarbon placed in its center. Then the entire box was filled 

completely with similar hydrocarbon molecules. The resulting box was extended along Z-axis to bring the 

final dimensions to 5x5x10 nm3. This vacant space on either side was solvated with SPC/E water2, thereby 

generating a biphasic system. The resulting assemblies for some representative hydrocarbons from each 

category (P, N, and A) are shown in Figure S1. Each system was thoroughly minimized in several steps, 

Oil Component Number of Molecules Weight (%) 

Hexane 56 8.61 

Heptane 70 12.51 

Octane 80 16.30 

Dodecane 104 31.60 

Benzene 20 2.79 

Toluene 64 10.52 

Cyclohexane 36 5.40 

Cycloheptane 70 12.26 

Table S1: Molecular description of the hydrocarbon components present in Model-2. 
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followed by 15 ns NVT equilibration. Finally, 15 ns of NPnormalAT production was carried out, with the 

reference pressure set to 1 bar along XY plane using Berendsen Barostat3. 

 

 

Figure S1: Bilayer sandwiched configuration of (A) Dodecane, (B) Benzene, and (C) Cyclohexane generated for oil-water 

IFT studies. Colour scheme: Blue: water, Green: Hydrocarbons, Orange: Carbon and within 5 Å of water. 

Figure S2: Correlation between calculated and experimental oil-water IFT values for the 

hydrocarbons of Model-1, and Model-2. 
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Hydrocarbon IFTcalc (mN/m) IFTexp (mN/m) Error (%) 

Hexane 50.3 50.5 0.4 

Heptane 51.6 51.9 0.6 

Octane 52.1 52.7 1.1 

Dodecane 55.3 53.7 3.0 

Benzene 35.9 34.7 3.5 

Toluene 38.9 37.7 3.2 

Cyclohexane 51.9 48.9 6.2 

Cycloheptane 47.0 44.9 4.7 

Table S3: Comparison between calculated and experimental oil-water IFT values for hydrocarbons of Model-1, and Model-2. 

 

Surface Hydrophobicity Dodecane-Water IE Dodecane-GS IE Dodecane-SNP IE 

Solvent-Silica IE Solvent-GS IE Solvent-SNP IE Silica-GS IE 

Silica-SNP IE GS-SNP IE Silica-Dodecane IE Δ(Silica-Dodecane) IE 

Dodecane RDF peak value Dodecane RDF peak distance Fraction of dodecane 

detached 

 

Table S4: Complete descriptor set tested during machine learning models for oil-model 1. Here IE represents the interaction 

energy between the given components (in kJ/mol), and Δ(Silica-Dodecane) IE represents 𝛥(𝐸𝐷𝑂𝐷−𝑆𝐼𝐿,𝐺𝑆+𝑆𝑁𝑃 −

𝐸𝐷𝑂𝐷−𝑆𝐼𝐿,𝑤𝑎𝑡𝑒𝑟𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔). 

 

Surface Hydrophobicity Oil-Water IE Oil-GS IE Oil-SNP IE 

Solvent-Silica IE Solvent-GS IE Solvent-SNP IE Silica-GS IE 

Silica-SNP IE GS-SNP IE Silica-Oil IE Δ(Silica-Oil) IE 

Oil RDF peak value Oil RDF peak distance Fraction of Oil detached  

Table S5: Complete descriptor set tested during machine learning models for oil-model 2. Here IE represents the interaction 

energy between the given components (in kJ/mol), and Δ(Silica-Oil) IE represents 𝛥(𝐸𝑂𝑖𝑙−𝑆𝐼𝐿,𝐺𝑆+𝑆𝑁𝑃 − 𝐸𝑂𝑖𝑙−𝑆𝐼𝐿,𝑤𝑎𝑡𝑒𝑟𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔). 
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Figure S3: SHAP scores of the 10 best descriptors for (A) ML-1, and (B) ML-2, based on oil Model-1. 

Figure S4: SHAP scores of the 10 best descriptors for (A) ML-1, and (B) ML-2, based on oil Model-2. 
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Figure S5: Pairwise Pearson’s Correlation Coefficient Matrix for descriptors of (A) ML-1, and (B) ML-2, based on oil 

Model-1. 

Figure S6: Pairwise Pearson’s Correlation Coefficient Matrix for descriptors of (A) ML-1, and (B) ML-2, based on 

oil Model-2. 
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Oil Model Silica Hydrophobicity Rg (nm) 

1 0 6.46 ± 0.10 

1 25 6.50 ± 0.09 

1 50 6.18 ± 0.09 

1 75 6.43 ± 0.14 

1 100 6.30 ± 0.16 

2 0 6.57 ± 0.08 

2 25 6.42 ± 0.08 

2 50 6.48 ± 0.08 

2 75 6.45 ± 0.08 

2 100 6.46 ± 0.08 

Table S6: Average values of Rg along with their associated errors for the two oil models. 

 

 

  

 

 

 

 

 

 

 

Figure S7: Configuration of adsorbed oil of Model-1 over different silica slabs. The surface hydrophobicity (as %) of the 

silica surfaces are (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. 
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Figure S8: Configuration of adsorbed oil of Model-2 over different silica slabs. The surface hydrophobicity (as %) of the 

silica surfaces are (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. 
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Figure S9: Variation in radius of gyration (Rg) for the oil molecules across various systems of (A) 

Model-1, and (B) Model-2 
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Figure S10: Oil-Silica Interaction energies for (A) Model-1, and (B) Model-2. 

Figure S11: Actual contributions from Coulombic and Lennard-Jones energies toward oil-silica interaction energy values. Here (A) 

Model-1 and (B) Model-2. 
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Figure S12: Variation of Model-1 oil RDF peaks with distance for different silica surfaces. The hydrophobicity (%) of 

the silica slabs are (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. Colour scheme: Black markers: dodecane adsorbed over 

silica slab in vacuum, and waterflooding; Blue markers: different combinations of surfactants and nanoparticles; red 

line: best fit regression line. 
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Figure S13: Variation of Model-2 oil RDF peaks with distance for different silica surfaces. The hydrophobicity (%) of 

the silica slabs are (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. Colour scheme: Black markers: dodecane adsorbed over 

silica slab in vacuum, and waterflooding; Blue markers: different combinations of surfactants and nanoparticles; red 

line: best fit regression line. 
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Figure S15: Variation in ΔEDOD-SIL for Model-1 oil molecules over different silica surfaces. The hydrophobicity (%) of the silica 

slabs are (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. 

Figure S14: Change in (A) DOD-SIL, and (B) OIL-SIL interaction energies for silica surfaces with different 

hydrophobicity. Here, Δ represents the difference in the oil-silica interaction energy for the GS + SNP added system, and 

the oil adsorbed system in vacuum. Here, averaging is done over all the energy differences as observed for a given silica 

slab. 
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Figure S16: Variation in ΔEOIL-SIL for Model-2 oil molecules over different silica surfaces. The hydrophobicity (%) of the silica 

slabs are (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. 

Figure S17: Plots for distance variation between the COM of GS and Silica surfaces, in presence of different SNPs. The 

hydrophobicity (in %) of the silica slabs are: (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. The variation is for oil Model-1. 
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Figure S18: Plots for distance variation between the COM of SNP and Silica surfaces, in presence of different GSs. The 

hydrophobicity (in %) of the silica slabs are: (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. The variation is for oil Model-1. 

Figure S19: Plots for distance variation between the COM of GS and Silica surfaces, in presence of different SNPs. The 

hydrophobicity (in %) of the silica slabs are: (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. The variation is for oil Model-2. 
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Figure S20: Plots for distance variation between the COM of SNP and Silica surfaces, in presence of different GSs. The 

hydrophobicity (in %) of the silica slabs are: (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. The variation is for oil Model-2. 

Figure S21: Plots for variation in GS-SNP interaction energy against SNP hydrophobicity. The hydrophobicity (in %) of silica slabs 

are : (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. Oil Model-1 



S16 
 

 

OIL MODEL/ML 

Model 

ML Algorithm Hyperparameter Grid Best Parameters 

 

 

 

 

 

 

 

Model-1, ML-1 

Support Vector Regression param_grid = { 

    'C': [0.1, 1, 10, 100], 

    'epsilon': [0.01, 0.1, 1], 

    'kernel': ['linear', 'poly', 'rbf'] 

} 

{'C': 100, 'epsilon': 1, 'kernel': 'linear'} 

 

Ridge Regression param_grid = {'alpha': np.logspace(-4, 

4, 50)} 

{'alpha': 0.8286427728546842} 

 

XGBoost param_grid = { 

    'n_estimators': [50, 100, 200], 

    'max_depth': [3, 5, 7], 

    'learning_rate': [0.01, 0.1, 0.3], 

    'subsample': [0.7, 0.8, 0.9] 

} 

{'learning_rate': 0.01, 'max_depth': 3, 'n_estimators': 

200, 'subsample': 0.7} 

 

Random Forest param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [None, 10, 20,50], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [2,4,6,8,10,15], 

    'max_features': ['auto', 'sqrt', 'log2'], 

    'bootstrap': [True, False] 

} 

{'bootstrap': False, 'max_depth': 10, 'max_features': 

'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 5, 

'n_estimators': 300} 

 

AdaBoost param_grid = { 

    'n_estimators': [50, 100, 200, 300], 

    'learning_rate': [0.01, 0.1, 1.0, 10.0] 

} 

{'learning_rate': 0.1, 'n_estimators': 100} 

 

 

Figure S22: Plots for variation in GS-SNP interaction energy against SNP hydrophobicity. The hydrophobicity (in %) of silica 

slabs are : (A) 0, (B) 25, (C) 50, (D) 75, and (E) 100. Oil Model-2. 
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Model-1, ML-2 

Support Vector Regression param_grid = { 

    'C': [0.1, 1, 10, 100], 

    'epsilon': [0.01, 0.1, 1], 

    'kernel': ['linear', 'poly', 'rbf'] 

} 

{'C': 100, 'epsilon': 1, 'kernel': 'linear'} 

 

Ridge Regression param_grid = {'alpha': np.logspace(-4, 

4, 50)} 

{'alpha': 0.009102981779915217} 

 

XGBoost param_grid = { 

    'n_estimators': [50, 100, 200], 

    'max_depth': [3, 5, 7], 

    'learning_rate': [0.01, 0.1, 0.3], 

    'subsample': [0.7, 0.8, 0.9] 

} 

{'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50, 

'subsample': 0.7} 

 

Random Forest param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [None, 10, 20,50], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [2,4,6,8,10,15], 

    'max_features': ['auto', 'sqrt', 'log2'], 

    'bootstrap': [True, False] 

} 

{'bootstrap': True, 'max_depth': None, 'max_features': 

'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 2, 

'n_estimators': 200} 

 

AdaBoost param_grid = { 

    'n_estimators': [50, 100, 200, 300], 

    'learning_rate': [0.01, 0.1, 1.0, 10.0] 

} 

{'learning_rate': 0.01, 'n_estimators': 50} 

 

 

 

 

 

 

 

 

Model-2, ML-1 

Support Vector Regression param_grid = { 

    'C': [0.1, 1, 10, 100], 

    'epsilon': [0.01, 0.1, 1], 

    'kernel': ['linear', 'poly', 'rbf'] 

} 

{'C': 100, 'epsilon': 0.1, 'kernel': 'linear'} 

 

Ridge Regression param_grid = {'alpha': np.logspace(-4, 

4, 50)} 

{'alpha': 0.08685113737513521} 

 

XGBoost param_grid = { 

    'n_estimators': [50, 100, 200], 

    'max_depth': [3, 5, 7], 

    'learning_rate': [0.01, 0.1, 0.3], 

    'subsample': [0.7, 0.8, 0.9] 

} 

{'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50, 

'subsample': 0.9} 

 

Random Forest param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [None, 10, 20,50], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [2,4,6,8,10,15], 

    'max_features': ['auto', 'sqrt', 'log2'], 

    'bootstrap': [True, False] 

} 

{'bootstrap': False, 'max_depth': 10, 'max_features': 

'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 5, 

'n_estimators': 200} 

 

AdaBoost param_grid = { 

    'n_estimators': [50, 100, 200, 300], 

    'learning_rate': [0.01, 0.1, 1.0, 10.0] 

} 

{'learning_rate': 1.0, 'n_estimators': 100} 

 

 

Support Vector Regression param_grid = { {'C': 100, 'epsilon': 0.1, 'kernel': 'linear'} 
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Model-2, ML-2 

    'C': [0.1, 1, 10, 100], 

    'epsilon': [0.01, 0.1, 1], 

    'kernel': ['linear', 'poly', 'rbf'] 

} 

 

Ridge Regression param_grid = {'alpha': np.logspace(-4, 

4, 50)} 

{'alpha': 1.2067926406393288} 

 

XGBoost param_grid = { 

    'n_estimators': [50, 100, 200], 

    'max_depth': [3, 5, 7], 

    'learning_rate': [0.01, 0.1, 0.3], 

    'subsample': [0.7, 0.8, 0.9] 

} 

{'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50, 

'subsample': 0.8} 

 

Random Forest param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [None, 10, 20,50], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [2,4,6,8,10,15], 

    'max_features': ['auto', 'sqrt', 'log2'], 

    'bootstrap': [True, False] 

} 

{'bootstrap': False, 'max_depth': None, 'max_features': 

'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 2, 

'n_estimators': 200} 

 

AdaBoost param_grid = { 

    'n_estimators': [50, 100, 200, 300], 

    'learning_rate': [0.01, 0.1, 1.0, 10.0] 

} 

{'learning_rate': 0.01, 'n_estimators': 200} 

 

Table S7: Hyperparameter grid along with their optimized values, as obtained for each Machine Learning (ML) model. 

 

 

 

Figure S23: Plots for variation in R2 vs n-splits during K-fold cross validation of ML-1 models of oil Model-1. The ML algorithms 

are: (A) Support Vector Regression (SVR), (B) Ridge regression, (C) Extreme Gradient Boosting (XGBoost), (D) Random Forest, 

and (E) Adaptive Boosting (Adaboost). 
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Figure S24: Plots for variation in R2 vs n-splits during K-fold cross validation of ML-2 models of oil Model-1. The ML 

algorithms are: (A) Support Vector Regression (SVR), (B) Ridge regression, (C) Extreme Gradient Boosting (XGBoost), (D) 

Random Forest, and (E) Adaptive Boosting (Adaboost). 

Figure S25: Plots for variation in R2 vs n-splits during K-fold cross validation of ML-1 models of oil Model-2. The ML algorithms 

are: (A) Support Vector Regression (SVR), (B) Ridge regression, (C) Extreme Gradient Boosting (XGBoost), (D) Random Forest, 

and (E) Adaptive Boosting (Adaboost). 



S20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S26: Plots for variation in R2 vs n-splits during K-fold cross validation of ML-2 models of oil Model-2. The ML algorithms 

are: (A) Support Vector Regression (SVR), (B) Ridge regression, (C) Extreme Gradient Boosting (XGBoost), (D) Random Forest, 

and (E) Adaptive Boosting (Adaboost). 
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Figure S27: Error parameters associated for K-fold validation (A, C), and test set predictions (B, D). Here, (A, B), 

and (C, D) represents ML-1 and ML-2 models respectively. The data is based on Oil Model-1. 
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Figure S28: Error parameters associated for K-fold validation (A, C), and test set predictions (B, D). Here, 

(A, B), and (C, D) represents ML-1 and ML-2 models respectively. The data is based on Oil Model-2. 


