Strong spin-orbit coupling effect induced large valley splitting in Janus MSeXH

(M = Cr, Mo, W; X = N, P)

Yang Zhang (张阳)¹, Shi-qian Qiao (乔世前)¹, Cheng-long Wu (吴成龙)¹, Zhi-qiang Ji(纪智强)¹, Hong Wu (武红) and Feng Li (李峰)^{1†}

¹New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (*NJUPT*), Nanjing 210046, China

Support **Fig.1**: (a)The electron energy band diagram along the high symmetry points of CrSeNH without and (b)with considering *SOC*; (c) The red dashed line obtained from the Bloch, while the blue dashed line is derived from the Wannier functions with considering *SOC*. This figure is a superposition

of the band structures from both methods and the Fermi energy is set to zero.

Support Fig.2: (a) The electron energy band diagram along the high symmetry points of CrSePH without and (b) with considering SOC, (c) The red dashed line obtained from the Bloch, while the blue dashed line derived from the Wannier functions with considering SOC. This figure is a superposition of the band structures from both methods and the Fermi energy is set to zero.

Support Fig.3: (a)The electron energy band diagram along the high symmetry points of MoSePH

[†] Corresponding author. E-mail: *lifeng@njupt.edu.cn*

without and (b) with considering *SOC*; (c) The red dashed line obtained from the Bloch, while the blue dashed line derived from the Wannier functions with considering *SOC*. This figure is a superposition of the band structures from both methods and the Fermi energy is set to zero.

Support **Fig.4**: (a) The electron energy band diagram along the high symmetry points of WSeNH without and (b) with considering *SOC*, (c) The red dashed line obtained from the Bloch, while the blue dashed line derived from the Wannier functions with considering *SOC*. This figure is a superposition of the band structures from both methods and the Fermi energy is set to zero.

Support Fig.5: (a) The electron energy band diagram along the high symmetry points of WSePH without and (b) with considering SOC; (c) The red dashed line obtained from the Bloch, while the blue dashed line derived from the Wannier functions with considering SOC. This figure is a superposition of the band structures from both methods and the Fermi energy is set to zero.

Support **Fig.6**: (a)The total density of states of each atom of 1L CrSeNH, (b) the projected density of states of the s, p, d orbitals of Cr atom, (c) The projected energy band diagram of the d orbitals of the Cr atom in two-dimensional, where the d_{xy} , d_{x2-y2} , d_{z2} , d_{yz} , d_{xz} orbitals of Cr is in green, red, blue, magenta, orange.

Support **Fig.7**: (a)The total density of states of each atom of 1L CrSePH, (b) the projected density of states of the s, p, d orbitals of Cr atom, (c) The projected energy band diagram of the d orbitals of the Cr atom in two-dimensional, where the d_{xy} , d_{x2-y2} , d_{z2} , d_{yz} , d_{xz} orbitals of Cr is in green, red, blue, magenta, orange.

Support **Fig.8**: (a)The total density of states of each atom of 1L MoSePH, (b) the projected density of states of the s, p, d orbitals of Mo atom, (c) The projected energy band diagram of the d orbitals of the Mo atom in two-dimensional, where the d_{xy} , d_{x2-y2} , d_{z2} , d_{yz} , d_{xz} orbitals of Mo is in green, red, blue,

Support Fig.9: (a)The total density of states of each atom of 1L WSeNH, (b) the projected density of

states of the s, p, d orbitals of W atoms, (c) The projected energy band diagram of the d orbitals of the W atom in two-dimensional, where the d_{xy} , d_{x2-y2} , d_{z2} , d_{yz} , d_{xz} orbitals of W is in green, red, blue, magenta, orange.

Support **Fig.10**: (a)The total density of states of each atom of 1L WSePH, (b) the projected density of states of the s, p, d orbitals of W atom, (c) The projected energy band diagram of the d orbitals of the W atom in two-dimensional, where the d_{xy} , d_{x2-y2} , d_{z2} , d_{yz} , d_{xz} orbitals of W is in green, red, blue, magenta, orange.

FigS13: (a-h) is a band plot at -4%-4% biaxial strain of MoSeNH.

FigS16: (a-h) is a band plot at -4%-4% biaxial strain of WSePH.

Support Fig.17: (a-e) The left is Berry curvature of 1L MSeXH contour maps in the Brillouin zone and the right is along the high symmetry points.

11								
	Matal	Se	X (N/P)	H				
CrSeNH	- 1.513	+0.377	+0.226	+0.910				
CrSePH	- 1.100	+0.633	- 0.349	+0.817				
MoSeNH	- 1.368	+0.199	+0.602	+0.567				
MoSePH	- 0.596	+0.217	- 0.459	+0.828				
WSeNH	- 1.396	+0. 213	+0.497	+0.686				
WSePH	- 1.254	+0.541	- 0.110	+0.823				

Support Table 1: Bader Charges of 1L MSeXH (+: gain electrons; -: lose electrons)

Support **Table 2**: the values of 1L MSeXH (M = Cr, Mo, W; X = N, P) monolayers' without soc E_g (enger band gap), *VSS* (valley spin splitting), with soc E_g (enger band gap), wannier berry is that Berry curvature calculated by Wann functionals, vasp berry is that Berry curvature calculated by Bloch.

	without soc	VSS	with soc	wannier	vasp
	$E_g \left(\mathrm{eV} \right)$	(meV)	$E_g(eV)$	berry $(Å^2)$	berry $(Å^2)$
CrSeNH	1.296	99	1.070	16.02	15.88
CrSePH	1.151	185	1.025	21.30	21.00
MoSeNH	2.219	170	2.212	12.20	11.20
MoSePH	1.724	190	1.469	22.00	19.19
WSeNH	2.6	466	2.226	12.04	11.38
WSePH	1.556	495	1.246	42.00	40.42

The computational formalism for the spin-orbit in solid-state materials:

LSORBIT = .TRUE. (Activate SOC)

GGA-COMPAT = .FALSE. (Apply spherical cutoff on gradient field)

LMAXMIX = 4 (For d elements increase LMAXMIX to 4, f: LMAXMIX = 6)

1.LSORBIT = True switches on spin-orbit coupling (SOC) and automatically sets LNONCOLLINEAR = True. It requires using vasp-ncl. *SOC* couples the spin degrees of freedom with the lattice degrees of freedom.

2.GGA and METAGGA functionals might break the symmetry of the Bravais lattice slightly for cells that are not primitive cubic cells. The origin of this problem is subtle

and relates to the fact that the gradient field breaks the lattice symmetry for noncubic lattices. This can be fixed by setting GGA_COMPAT = .FALSE.

3.LMAXMIX controls up to which l-quantum number the one-center PAW charge densities are passed through the charge density mixer and written to the CHGCAR file.

Switching on SOC introduces an additional term to the Hamiltonian, given by: $H_{SOC}^{\alpha\alpha} \propto \sigma * L$

where σ is the Pauli spin operator and *L* is the angular momentum operator. This term couples the spin and orbital degrees of freedom. As a relativistic correction, *SOC* is most significant near the nuclei, and it is assumed that contributions of H_{SOC} outside the *PAW* (Projector Augmented Wave) spheres are negligible. Therefore, VASP (Vienna Ab initio Simulation Package) only calculates the matrix elements of H_{SOC} for the all-electron one-center contributions:

$$E_{soc}^{ij} = \sigma_{RiRj}\sigma_{lilj}\sum_{nk}w_k f_{nk}\sum_{\alpha\beta} \langle \psi_{nk}^{\alpha\alpha} | p_i^{\alpha} \rangle \langle \Phi_i | H_{SOC}^{\alpha\beta} | \Phi_j \rangle \langle p_j^{\alpha} | \psi_{nk}^{\alpha\beta} \rangle$$

Where $\Phi_i(r) = R_i(|r - R_i|)Y_{limi}(\theta, \varphi)$ are the partial waves of an atom centered at R_i , $\psi_{nk}^{\sim\alpha}$ is the spinor-component $\alpha=\uparrow,\downarrow$ of the pseudo-orbital with band-index n and Bloch vector k, and f_{nk} and ω_k are the Fermi- and k-point weights, respectively. t is possible to write the partial magnetization by setting LORBIT, i.e., the site- and orbital-resolved expectation value of the Pauli-spin operator σ . And the partial orbital angular momentum by setting LORBMOM, i.e., the site- and orbital-resolved expectation value of the orbital angular momentum operator *L*.

POSCAR files:

```
CrSeNH
  2.9975392168889126
                        0.00000000000000000
   -1.4752028917514424
                        2.5552453737443490
                                           0.00000000000000000
    0.0000000000000000
                        0.00000000000000000
                                           22.600003814999992
  Ν
       Se Cr
                Η
    1
          1 1
                   1
Direct
 0.9831444291742457 0.0169445614472252 0.5725811220879393
 0.9831387997087049 0.0169453618532316 0.4516641557712973
 0.6498053994389039 0.3502779731019672 0.5261371309896106
```

CrSePH

0100								
1	.0000000	000000)0					
	3.18097	861162	2941	88	0.000000000	0000	0000	0.0000000000000000000000000000000000000
	-1.590014	459350	8665	51	2.7548017343	3214	077	0.0000000000000000000000000000000000000
	0.00000	000000)0000	00	0.000000000	0000	0000	22.6000003814999992
Р	Se	Cr	Н					
1	1	1		1				
Direc	t							
0.9	8315068	244661	32	0.01	694633461104	90	0.573	4182124547829
0.9	8311413	389935	561	0.01	695227473494	04	0.444	0971836890313
0.6	64977162	266040)27	0.35	028045410955	14	0.514	1600605606129
0.9	8323355	599363	354	0.01	693095554445	28	0.636	6445422955778
MoS	eNH							
1	.0000000	000000)0					
	3.11714	686720)554′	73	0.000000000	0000	0000	0.0000000000000000000000000000000000000
	-1.557748	818269	5881	0	2.699429907	1793	8586	0.0000000000000000000000000000000000000
	0.00000	000000)0000	00	0.000000000	0000	0000	22.6000003814999992
N	Se	Mo	Н					
1	1	1	1					
Direc	t							
0.9	8329798	138236	575	0.01	674228926770	89	0.097	5022451057305
0.9	8320479	597190)40	0.01	683791679003	97	0.969	5909495719928
0.6	64989830	484889	992	0.35	008858385621	95	0.046	57717772285051
0.9	8359894	179683	828	0.01	633121608603	09	0.142	27750270937725
MoS	ePH\(0\0\	1)\(2)						
1	.0000000	000000)0					
	3.33472	474518	8161	69	0.000000000	0000	0000	0.0000000000000000000000000000000000000
	-1.676687	759013	9621	7	2.892086915	1689	9437	0.0000000000000000000000000000000000000
	0.00000	000000)0000	00	0.000000000	0000	0000	22.6000003814999992
Р	Se	Mo	Н					
1	1	1		1				
Direc	t							
0.9	8291681	591736	599	0.01	673495062048	08	0.098	6102556395907
0.9	8307786	382741	41	0.01	679014654218	79	0.961	2031410441012
0.6	5014301	390051	95	0.35	034533225054	83	0.035	2235146163298
0.9	8386233	035469	929	0.01	612957658678	21	0.161	6030876999719
WSe]	NH							
1	.0000000	000000)0					
	3.10279	932421	902	15	0.000000000	0000	0000	0.000000000000000000

	-1.5519032736616309			2.6865183087522060		0.00000000000000000000000000000000000		
	0.0	000000	000000	0000	0.0000000000000	0000	22.6000003814999992	
	N	Se	W	Н				
	1	1	1	1				
Dire	ect							
0	.9832	894659	924705	5 0.0	168272585788785	0.5759	979707690874	
0	.9833	406691	820414	0.0	167514635269868	0.4466	5384590524868	
0	.6499	849967	673370	0.3	500165406261004	0.5244	500680386182	
0	.9826	548630	581584	0.0	175147562680351	0.6212	2335011398125	
WS	eРН							
	1.000	000000	00000					
	3.3	541313	3528667	587	0.000000000000	0000	0.00000000000000000000000000000000000	
	-1.6	766062	891802	656	2.9046140750046	5376	0.0000000000000000	
	0.0	000000	000000	0000	0.000000000000	0000	22.6000003814999992	
	Р	Se	W	Н				
	1	1	1	1				
Dire	ect							
0	.9832	761040	073323	0.0	167144821482476	0.0986	5223293862265	
0	.9832	334422	2301137	0.0	167449464219627	0.9611	078649016536	
0	.6499	507406	680582	2 0.3	500343034122506	0.0353	3706258855115	
0	.9835	397370	944990	0.0	165062740175382	0.1615	391788265879	