Supporting Information

The Carrier Dynamics for Self-assembled Black Phosphorus

and Perovskite Nanocrystal Enable Photocatalytic Conversion

Jing Ji, ^a Hang Yin, ^{*a} Xin Zhou, ^a Bingxi Song, ^a Xuhui Feng, ^b Peiqing Cai, ^b Laishun Qin, ^{*a} Yuexiang Huang, ^a Jianyong Liu, ^c Da Chen^{*a}

[a] Jing Ji, Hang Yin, Xin Zhou, Bingxi Song, Laishun Qin, Yuexiang Huang, Da Chen

College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China

E-mail: yinhang@cjlu.edu.cn E-mail: dchen_80@hotmail.com

[b] Xuhui Feng, Peiqing Cai

College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China

[c] Jianyong Liu

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China

Corresponding Author <u>*yinhang@cjlu.edu.cn</u> <u>*qinlaishun@cjlu.edu.cn</u> *dchen 80@hotmail.com

Contents

Theoretical Methods	S1
Figure S1	S2
Figure S2	S2
Figure S3	S2
Figure S4	S3
Figure S5	S3
Figure S6	S3
Figure S7	S4
Figure S8	S4
Figure S9	S4
Figure S10	S5
Figure S11	S5
Figure S12	S6
Figure S13	S6
Figure S14	S6
Figure S15	S7
Figure S16	S7
Figure S17	S8
Figure S18	S8
Figure S19	S8
Table S1	S9
Table S2	S9

S1. Theoretical Methods

Theoretical Calculation of Weak Interaction: The weak interaction for the intermediates were calculated by $sign(\lambda_2)\rho$ function, and plotted by independent gradient model (IGM). The IGM is an effective method to estimate the the non-covalent interactions in hybrid materials. As similar to RDG method, the weak inter- and intra-molecular interactions were calculated by the function of $sign(\lambda_2)\rho$ and the δ_g index.

Here, we summarize the IGM method considering two given fragments, i.e. CsPbBr₃ and BP framework. Given a geometry, the electron density (ED) ρ is computed at each node of a grid encompassing the molecular system. Its gradient $\nabla \rho$ is also computed. Afterwards, the fragment components of the true ED gradient $(\frac{\partial \rho_A}{\partial x}, \frac{\partial \rho_B}{\partial x})$ are determined by equation S1 (using the gradient based partition (GBP) when the ED is derived from a wave function).

$$\frac{\partial \rho}{\partial x} = \left| \frac{\partial \rho_A}{\partial x} + \frac{\partial \rho_B}{\partial x} \right|$$
 S1

Between CsPbBr₃ and BP framework, the two individual gradient contributions have opposite signs, which mean that the fragment EDs mix when the two fragments approach each other. This overlap between ED clouds results in an attenuation of the total ED gradient in the region between fragments. To quantify this attenuation, we simultaneously consider two molecular models: the interacting (real) system, and a non-interacting reference (i.e., the so-called independent gradient model (IGM)). At a given point of the grid, for the real system featuring the interaction, the true ED gradient is:

$$\frac{\partial \rho_{IGM}}{\partial x} = \left| \frac{\partial \rho_A}{\partial x} + \frac{\partial \rho_B}{\partial x} \right| \qquad S2$$

The norm $|\nabla \rho_{IGM}|$ resulting from equation S2 represents an upper limit of the norm $|\nabla \rho|$ of the true ED gradient. Thereby, we calculate the local δ_g descriptor as follows:

$$\delta_{g} = \left| \nabla \rho_{IGM} \right| - \left| \nabla \rho \right|$$
 S3

which quantifies the contragradience between the two fragment ED sources. Non-zero values of δ_g exclusively correspond to interaction situations: the larger δ_g , the stronger the interaction.

S2. Figures

Figure S1. The reconstructed interfacial model with initial lattice parameters and optimized lattice parameters, respectively.

Figure S2. The optimized total energy and free energy corresponding to each step for reconstructed interfacial model.

Figure S3. XRD patterns of CsPbBr₃: x%BP (x = 1, 5, 10) NCs for five synthesis procedures.

Figure S4. XRD patterns of pure BP and standard JCPDS data (No.76-1963).

Figure S5. (a-b) TEM images and (c) HRTEM images of pure BP.

Figure S6. (a-d) TEM images, (e) HRTEM and (f) the size distribution images of CsPbBr₃ NCs.

Figure S7. (a) XPS full-scan spectra of the CsPbBr3 and BP. (b) XPS valence band spectra of the

CsPbBr₃ and BP.

Figure S8. The band gap values of CsPbBr₃: x%BP (x%= 0%, 1%, 5%, 10%) estimated from the

plotted curves of $(\alpha h\nu)^2$ vs hv.

Figure S9. UV-vis absorption spectrum of BP.

Figure S10. The band gap values of BP estimated from the plotted curves of $(\alpha hv)^2$ vs hv.

Figure S11. (a-c) Absorption spectra of the CsPbBr₃: x%BP (x% = 1%, 5%, 10%) systems for the first time under a 300 W xenon lamp for 6 hours, and (d) the first time C/C₀ plot vs irradiation time for CsPbBr₃: x%BP (x% = 1%, 5%, 10%). (e-g) Absorption spectra of the CsPbBr₃: x%BP (x% = 1%, 5%, 10%) systems for the second time under a 300 W xenon lamp for 6 hours, and (h) the second time C/C₀ plot vs irradiation time for CsPbBr₃: x%BP (x% = 1%, 5%, 10%). (i-k) Absorption spectra of the CsPbBr₃: x%BP (x% = 1%, 5%, 10%) systems for the third time under a 300 W xenon lamp for 6 hours, and (h) the third time C/C₀ plot vs irradiation time for CsPbBr₃: x%BP (x% = 1%, 5%, 10%).

Figure S12. (a)XRD of CsPbBr₃ and CsPbBr₃: BP in aqueous solution of RhB with six hours under a 300 W Xe lamp. (b)TEM patterns of CsPbBr₃: BP in aqueous solution of RhB with six

hours under a 300 W Xe lamp.

Figure S13. (a) Absorption spectra of the CsPbBr₃: 0%BP systems under a 300 W xenon lamp for 6 hours, and (b) C/C₀ plot vs irradiation time.

Figure S14. Absorption spectra and C/C₀ plots of MO (a-d), MB (e-h) and TC-HCl (i-l) degradation by CsPbBr₃: x%BP (x% = 1%, 5%, 10%) under a 300 W xenon lamp for 6 hours.

Figure S15. (a-c) The absorption spectra of the first EDTA, TBA and ZJ-701capture, and (d) the first photocatalytic degradation with scavengers. (e-g) The absorption spectra of the second EDTA, TBA and ZJ-701 capture, and (h) the second photocatalytic degradation with scavengers. (i-k) The absorption spectra of the third EDTA, TBA and ZJ-701capture, and (l) the third photocatalytic degradation with scavengers.

Figure S16. PL spectra of CsPbBr₃: x%BP (x%= 0%, 1%, 5%, 10%) systems with five hours under a 300 W Xe lamp.

Figure S17. FWHM and Integrated PL spectra of CsPbBr₃: x%BP (x%= 0%, 1%, 5%, 10%) systems with five hours under a 300 W Xe lamp.

Figure S18. Transient photocurrent of pure BP.

Figure S19. (a) Mott-Schottky curves and (b) the calculated N_d of CsPbBr₃: x%BP (x%= 0%, 1%, 5%, 10%).

S3. Tables

Table S1. The synthetic yields of CsPbBr₃: x%BP NCs (x% = 1%, 5%, 10%)

Sample	First (mg)	Second (mg)	Third (mg)	Fourth (mg)	Fifth (mg)	Average (mg)	Average (%)
BP	174.48	213.78	194.56	184.38	224.47	198.33±20.61	41.63±3.58
CsPbBr ₃	112.45	121.46	113.46	102.36	108.36	111.62±7.02	48.13±3.03
CsPbBr ₃ : 1%BP	121.56	125.36	117.78	123.67	127.67	123.21±3.77	52.57±1.61
CsPbBr ₃ : 5%BP	156.36	148.78	152.37	147.38	151.36	151.25±3.48	62.11±1.43
CsPbBr ₃ : 10%BP	172.36	168.35	170.36	174.37	173.35	171.76±2.41	67.32±0.95

Table S2. Summary of the photocatalytic degradation performance of inorganic halide perovskites

Catalyst	Degraded substance	Degradation Efficiency	Literature
CsPb ₂ Br ₅	RhB	50.45%	Solid State Sciences 143 (2023) 107262
CsPbBr ₃	TC HCl	6%	Journal of Colloid and Interface Science
CsPbBr ₃ @SiO ₂	ic-nei	75%	623 (2022) 974–984
CsPbBr ₃ : 5%BP	RhB	70%	This article