Supplemental Material for "Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements"

YingXing Cheng*

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany

E-mail: yingxing.cheng@mathematik.uni-stuttgart.de

Contents

S1 Hyperpolarizabilities Derived from Fitting Eq. $\left(\mathrm{S1}\right)$	3
S2 Polarizabilities Derived from Fitting Eq. (S2)	6
References	10

Static dipole polarizabilities (α) and hyperpolarizabilities (γ) are determined using the finite-field method 1. The energy of an atom placed in an external electric field of magnitude F_z along the z axis is expressed as

$$E(F_z) \approx E_0 - \frac{1}{2}\alpha F_z^2 - \frac{1}{24}\gamma F_z^4, \qquad (S1)$$

where E_0 represents the energy of the atom in the absence of the field. By applying leastsquares fitting to energies computed at various field strengths, values for α and γ were extracted. If γ yielded unphysical results, only α was retained using the simplified expression

$$E(F_z) \approx E_0 - \frac{1}{2}\alpha F_z^2.$$
(S2)

Each calculation is identified using a string representation of the computational setup, such as "2C-SR-CC@s-aug-ANO-RCC@(core 3)[vir 279]". These identifiers consist of components separated by the delimiter "@":

- The first part specifies the computational method (e.g., NR-CC, SR-CC, or DC-CC), with the prefix "1C" or "2C" indicating the use of one- or two-component relativistic Hamiltonians, respectively.
- 2. The second part denotes the basis set.
- 3. The third part describes the correlation level, providing details on the number of active electrons and virtual orbitals as "(core N)[vir M]". Here, "N" is the total number of valence and outer-core electrons, and "M" specifies the virtual orbitals included. The coupled-cluster module 2 supports a variety of correlated methods, including DHF, MP2, CCSD, and CCSD(T), all adhering to this identifier format.

Additional details can be found in the main text.

The percentage error δ_m of a property $X = \alpha$ or γ is computed as

$$\delta_m = \frac{X_m - X_{\text{CCSD}(\text{T})}}{X_{\text{CCSD}(\text{T})}} \times 100\%, \tag{S3}$$

where *m* refers to the method employed, such as DHF, MP2, or CCSD. For $X = \gamma$, γ_{CCSD} is used as the reference in Eq. (S3) instead of $\gamma_{\text{CCSD}(T)}$.

S1 Hyperpolarizabilities Derived from Fitting Eq. (S1)

Table S1 presents the γ values for group 12 elements obtained by fitting Eq. (S1). For clarity, all negative γ values have been excluded from the table.

Table S1: Dipole hyperpolarizabilities (γ , in 10⁴ a.u.) for group 12 elements. Uncertainties due to the numerical fitting procedure ($\Delta P_{\text{fitting}}$) are shown as error bars for values exceeding 500 a.u.

_

_

\mathbf{Z}	Atom	γ (10 ⁴ a.u.)	δ (%)	Method	Comments
30	Zn	54.16 ± 0.01	33.67	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 20)[vir 276]
		37.22	-8.14	MP2	
		42.05	3.77	CCSD	
		40.52		$\operatorname{CCSD}(T)$	
		50.83	35.48	DHF	1C-SR-CC@dyall.cv4z@(core 20)[vir 204]
		33.76	-10.01	MP2	
		39.00	3.96	CCSD	
		37.52		$\operatorname{CCSD}(T)$	
		50.93 ± 0.01	33.91	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 20)[vir 276]
		34.65	-8.90	MP2	
		39.48	3.79	CCSD	
		38.04		$\operatorname{CCSD}(T)$	
		50.95 ± 0.01	33.94	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 20)[vir 348]
		34.71	-8.77	MP2	
		39.49	3.80	CCSD	
		38.04		$\operatorname{CCSD}(T)$	
		50.92 ± 0.01	33.61	DHF	2C-DC-CC@s-aug-ANO-RCC@(core 20)[vir 314]
		34.72	-8.88	MP2	
		39.60	3.91	CCSD	

Table S1. continued.

\mathbf{Z}	Atom	γ (10 ⁴ a.u.)	δ	Method	Comments
		38.11		$\operatorname{CCSD}(T)$	
		50.89 ± 0.01	33.92	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 20)[vir 276]
		34.62	-8.91	MP2	
		39.44	3.79	CCSD	
		38.00		$\operatorname{CCSD}(T)$	
48	Cd	76.25 ± 0.02	40.26	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 30)[vir 344]
		44.86	-17.48	MP2	
		57.26 ± 0.01	5.32	CCSD	
		54.36 ± 0.01		$\operatorname{CCSD}(T)$	
		63.82 ± 0.01	39.91	DHF	1C-SR-CC@dyall.cv4z@(core 30)[vir 272]
		36.70	-19.55	MP2	
		47.97	5.16	CCSD	
		45.62		$\operatorname{CCSD}(T)$	
		63.95 ± 0.01	39.50	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 30)[vir 344]
		37.22	-18.79	MP2	
		48.17 ± 0.01	5.09	CCSD	
		45.84 ± 0.01		$\operatorname{CCSD}(T)$	
		63.95 ± 0.01	39.49	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 30)[vir 416]
		37.24	-18.77	MP2	
		48.18 ± 0.01	5.09	CCSD	
		45.84 ± 0.01		$\operatorname{CCSD}(T)$	
		63.75 ± 0.01	39.70	DHF	2C-DC-CC@s-aug-ANO-RCC@(core 30)[vir 366]
		38.11	-16.48	MP2	
		47.68 ± 0.01	4.48	CCSD	
		45.63 ± 0.01		$\operatorname{CCSD}(T)$	
		63.83 ± 0.01	39.51	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 30)[vir 344]
		37.16	-18.79	MP2	
		48.09 ± 0.01	5.10	CCSD	
		45.75 ± 0.01		$\operatorname{CCSD}(T)$	
80	Hg	81.65 ± 0.02	43.27	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 44)[vir 362]
		44.25 ± 0.01	-22.36	MP2	
		60.33 ± 0.01	5.86	CCSD	
		56.99 ± 0.01		$\operatorname{CCSD}(T)$	
		45.12	32.32	DHF	1C-SR-CC@dyall.cv4z@(core 44)[vir 290]
		27.21	-20.19	MP2	
		35.34	3.64	CCSD	
		34.10		$\operatorname{CCSD}(T)$	
		45.20 ± 0.01	31.99	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 44)[vir 362]

Table S1. continued.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbf{Z}	Atom	γ (10 ⁴ a.u.)	δ	Method	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			27.47	-19.79	MP2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			35.47	3.57	CCSD	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			34.25		$\operatorname{CCSD}(T)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			45.20 ± 0.01	32.25	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 44)[vir 460]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			27.35	-19.97	MP2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			35.42	3.62	CCSD	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			34.18		$\operatorname{CCSD}(T)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			44.88 ± 0.01	30.52	DHF	2C-DC-CC@s-aug-ANO-RCC@(core 44)[vir 282]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			28.05	-18.43	MP2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			35.52	3.30	CCSD	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			34.39		$\operatorname{CCSD}(T)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			44.94	31.90	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 44)[vir 362]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			27.38	-19.66	MP2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			35.29	3.56	CCSD	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			34.07		$\operatorname{CCSD}(T)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112	Cn	109.43 ± 0.04	47.38	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 44)[vir 434]
$\begin{array}{ccccccc} 79.78 \pm 0.02 & 7.45 & \text{CCSD} \\ \hline 74.25 \pm 0.02 & & \text{CCSD(T)} \\ \hline 30.25 & 8.87 & \text{DHF} & 1\text{C-SR-CC@dyall.cv4z@(core 44)[vir 336]} \\ \hline 25.83 & -7.06 & \text{MP2} \\ \hline 27.81 & 0.10 & \text{CCSD} \end{array}$			52.78 ± 0.01	-28.92	MP2	
74.25 ± 0.02 CCSD(T) 30.25 8.87 DHF 1C-SR-CC@dyall.cv4z@(core 44)[vir 336] 25.83 -7.06 MP2 27.81 0.10 CCSD			79.78 ± 0.02	7.45	CCSD	
30.25 8.87 DHF 1C-SR-CC@dyall.cv4z@(core 44)[vir 336] 25.83 -7.06 MP2 27.81 0.10 CCSD			74.25 ± 0.02		$\operatorname{CCSD}(T)$	
25.83 -7.06 MP2 27.81 0.10 CCSD			30.25	8.87	DHF	1C-SR-CC@dyall.cv4z@(core 44)[vir 336]
27.81 0.10 CCSD			25.83	-7.06	MP2	
			27.81	0.10	CCSD	
$27.79 \qquad \qquad \text{CCSD}(T)$			27.79		$\operatorname{CCSD}(T)$	
30.26 9.09 DHF 1C-SR-CC@s-aug-dyall.cv4z@(core 44)[vir 434]			30.26	9.09	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 44)[vir 434]
25.79 -7.02 MP2			25.79	-7.02	MP2	
27.77 0.12 CCSD			27.77	0.12	CCSD	
$27.73 \qquad \qquad \text{CCSD}(T)$			27.73		$\operatorname{CCSD}(T)$	
30.26 9.12 DHF 1C-SR-CC@d-aug-dyall.cv4z@(core 44)[vir 532]			30.26	9.12	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 44)[vir 532]
25.75 -7.11 MP2			25.75	-7.11	MP2	
27.76 0.13 CCSD			27.76	0.13	CCSD	
$27.73 \qquad \qquad \text{CCSD}(T)$			27.73		$\operatorname{CCSD}(T)$	
30.52 8.71 DHF 4C-DC-CC@dyall.cv4z@(core 12)[vir 264]			30.52	8.71	DHF	4C-DC-CC@dyall.cv4z@(core 12)[vir 264]
26.93 -4.08 MP2			26.93	-4.08	MP2	
27.98 -0.33 CCSD			27.98	-0.33	CCSD	
$28.07 \qquad \qquad \text{CCSD}(T)$			28.07		CCSD(T)	
30.47 9.11 DHF 2C-DC-CC@s-aug-dyall.cv4z@(core 48)[vir 434]			30.47	9.11	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 48)[vir 434]
25.97 -7.01 MP2			25.97	-7.01	MP2	
27.95 0.08 CCSD	-		27.95	0.08	CCSD	

Table S1. continued.

\mathbf{Z}	Atom	γ (10 ⁴ a.u.)	δ	Method	Comments
		27.93		$\operatorname{CCSD}(\mathrm{T})$	

A summary of the highlighted γ values for group 12 elements is provided in Table S2, based on data from Table S1.

Table S2: Static hyperpolarizabilities (in 10^4 a.u.) with nonrelativistic, scalar-relativistic, full Dirac-Coulomb relativistic effects of group 12 elements.

<u>^</u>		Zn	Cd	Hg	Cn
H	Method				
NR	DHF	4.54 ± 0.33	11.58 ± 0.14	11.21 ± 0.17	21.62 ± 0.23
	CCSD	2.63 ± 0.33	6.64 ± 0.14	6.79 ± 0.17	12.86 ± 0.23
	CCSD(T)	2.40 ± 0.43	5.90 ± 0.14	6.06 ± 0.28	11.32 ± 0.34
\mathbf{SR}	DHF	4.48	8.07	3.16	0.57
	CCSD	2.61	4.44	1.99	-0.49
	CCSD(T)	2.39 ± 0.19	3.88 ± 0.06	1.81 ± 0.22	-0.71 ± 0.54
DC	DHF	4.49	8.01	3.04	0.51
	CCSD	2.59	4.41	2.00	-0.43
	$\operatorname{CCSD}(\mathrm{T})$	2.38 ± 0.19	3.86	1.81 ± 0.21	-0.65 ± 1.18

S2 Polarizabilities Derived from Fitting Eq. (S2)

Table S3 lists the α values for group 12 elements, obtained using Eq. (S2). The most accurate results for NR-CC, SR-CC, and DC-CC calculations are highlighted.

Table S3: Dipole polarizabilities (α , in a.u.) for group 12 elements. Error bars reflect the uncertainties arising from the numerical fitting procedure ($\Delta P_{\text{fitting}}$) for cases where the errors exceed 0.005 a.u.

\mathbf{Z}	Atom	α (a.u.)	δ (%)	Method	Comments
30	Zn	54.07 ± 0.01	33.60	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 20)[vir 276]
		37.18 ± 0.01	-8.13	MP2	
		41.99 ± 0.01	3.76	CCSD	
		40.47 ± 0.01		$\operatorname{CCSD}(T)$	
		50.79	35.46	DHF	1C-SR-CC@dyall.cv4z@(core 20)[vir 204]

Table S3. continued.

Z	Atom	α (a.u.)	δ	Method	Comments
		33.74	-10.02	MP2	
		38.98	3.96	CCSD	
		37.49		$\operatorname{CCSD}(T)$	
		50.84	33.84	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 20)[vir 276]
		34.61	-8.89	MP2	
		39.43	3.79	CCSD	
		37.99		$\operatorname{CCSD}(T)$	
		50.84	33.84	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 20)[vir 348]
		34.67	-8.73	MP2	
		39.43	3.79	CCSD	
		37.99		$\operatorname{CCSD}(T)$	
		50.81	33.51	DHF	2C-DC-CC@s-aug-ANO-RCC@(core 20)[vir 314]
		34.69	-8.85	MP2	
		39.54	3.90	CCSD	
		38.06		$\operatorname{CCSD}(T)$	
		50.80	33.85	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 20)[vir 276]
		34.57	-8.90	MP2	
		39.39	3.79	CCSD	
		37.95		$\operatorname{CCSD}(T)$	
48	Cd	76.02	40.14	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 30)[vir 344]
		44.80	-17.41	MP2	
		57.12	5.31	CCSD	
	_	54.24		$\operatorname{CCSD}(T)$	
		63.76	39.90	DHF	1C-SR-CC@dyall.cv4z@(core 30)[vir 272]
		36.65	-19.58	MP2	
		47.92	5.16	CCSD	
	_	45.57		$\operatorname{CCSD}(T)$	
		63.78	39.38	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 30)[vir 344]
		37.19	-18.72	MP2	
		48.08	5.08	CCSD	
	_	45.76		$\operatorname{CCSD}(T)$	
		63.78	39.37	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 30)[vir 416]
		37.21	-18.69	MP2	
		48.09	5.08	CCSD	
		45.76		$\operatorname{CCSD}(T)$	
	-	63.59	39.59	DHF	2C-DC-CC@s-aug-ANO-RCC@(core 30)[vir 366]
		38.08	-16.40	MP2	
		47.59	4.47	CCSD	

Table S3. continued.

Z	Atom	α (a.u.)	δ	Method	Comments
		45.55		$\operatorname{CCSD}(T)$	
		63.67	39.39	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 30)[vir 344]
		37.12	-18.72	MP2	
		48.00	5.08	CCSD	
		45.68		$\operatorname{CCSD}(T)$	
80	Hg	81.43	43.18	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 44)[vir 362]
		44.17	-22.33	MP2	
		60.19 ± 0.01	5.84	CCSD	
		56.87 ± 0.01		$\operatorname{CCSD}(T)$	
		45.08	32.30	DHF	1C-SR-CC@dyall.cv4z@(core 44)[vir 290]
		27.20	-20.18	MP2	
		35.32	3.64	CCSD	
		34.08		$\operatorname{CCSD}(T)$	
		45.14	31.94	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 44)[vir 362]
		27.46	-19.72	MP2	
		35.43	3.56	CCSD	
		34.21		$\operatorname{CCSD}(T)$	
		45.14	32.21	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 44)[vir 460]
		27.35	-19.88	MP2	
		35.37 ± 0.01	3.61	CCSD	
		34.14 ± 0.01		$\operatorname{CCSD}(T)$	
		44.82	30.50	DHF	2C-DC-CC@s-aug-ANO-RCC@(core 44)[vir 282]
		28.04	-18.34	MP2	
		35.47 ± 0.01	3.29	CCSD	
		34.34 ± 0.01		$\operatorname{CCSD}(T)$	
		44.88	31.86	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 44)[vir 362]
		27.37	-19.59	MP2	
		35.25	3.56	CCSD	
		34.04		$\operatorname{CCSD}(T)$	
112	Cn	108.99	47.24	DHF	1C-NR-CC@s-aug-dyall.cv4z@(core 44)[vir 434]
		52.65	-28.87	MP2	
		79.52 ± 0.01	7.43	CCSD	
		74.02 ± 0.01		$\operatorname{CCSD}(T)$	
		30.24	8.78	DHF	1C-SR-CC@dyall.cv4z@(core 44)[vir 336]
		25.82	-7.13	MP2	
		27.83 ± 0.01	0.09	CCSD	
		27.80 ± 0.01		$\operatorname{CCSD}(T)$	
		30.24	8.99	DHF	1C-SR-CC@s-aug-dyall.cv4z@(core 44)[vir 434]

Table S3. continued.

\mathbf{Z}	Atom	α (a.u.)	δ	Method	Comments
		25.78	-7.09	MP2	
		27.78 ± 0.01	0.11	CCSD	
		27.75 ± 0.01		$\operatorname{CCSD}(T)$	
		30.25	9.04	DHF	1C-SR-CC@d-aug-dyall.cv4z@(core 44)[vir 532]
		25.75	-7.17	MP2	
		27.77 ± 0.01	0.12	CCSD	
		27.74 ± 0.01		$\operatorname{CCSD}(T)$	
		30.51	8.71	DHF	4C-DC-CC@dyall.cv4z@(core 12)[vir 264]
		26.92	-4.07	MP2	
		27.97	-0.33	CCSD	
		28.07		$\operatorname{CCSD}(T)$	
		30.46	9.01	DHF	2C-DC-CC@s-aug-dyall.cv4z@(core 48)[vir 434]
		25.97	-7.08	MP2	
		27.96 ± 0.02	0.06	CCSD	
		27.94 ± 0.02		$\operatorname{CCSD}(T)$	

Table S4 summarizes the most accurate α results for group 12 elements, as derived from Table S3.

Table S4: Static dipole polarizabilities (in a.u.) are presented with nonrelativistic, scalarrelativistic, and fully relativistic Dirac-Coulomb contributions for the elements of group 12, compared with the values reported in Ref. 3.The uncertainty due to the numerical fitting procedure ($\Delta P_{\text{fitting}}$) is accounted for as the error bar. Only uncertainties where $\Delta P_{\text{fitting}} > 0.005$ a.u. are shown.

		Zn	Cd	Hg	Cn
Ĥ	Method				
NR	DHF	54.16 ± 0.01	76.25 ± 0.02	81.65 ± 0.02	109.43 ± 0.04
	CCSD	42.05 ± 0.01	57.26 ± 0.02	60.33 ± 0.02	79.78 ± 0.04
	CCSD(T)	40.52	54.36 ± 0.01	56.99 ± 0.01	74.25 ± 0.02
\mathbf{SR}	DHF	50.93 ± 0.01	63.95 ± 0.01	45.20 ± 0.01	30.26
	CCSD	39.48 ± 0.01	48.17 ± 0.01	35.47 ± 0.01	27.77
	CCSD(T)	38.04	45.84 ± 0.01	34.25	27.73
DC	DHF	50.89 ± 0.01	63.83 ± 0.01	44.94	30.47
	CCSD	39.44 ± 0.01	48.09 ± 0.01	35.29	27.95
	CCSD(T)	38.00	45.75 ± 0.01	34.07	27.93
Ref. 3		38.67 ± 0.3	46 ± 2	33.91 ± 0.34	28 ± 2

References

- Das, A. K.; Thakkar, A. J. Static Response Properties of Second-Period Atoms: Coupled Cluster Calculations. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 2215.
- (2) DIRAC18. https://doi.org/10.5281/zenodo.2253986, Accessed on Jun 7, 2021.
- (3) Schwerdtfeger, P.; Nagle, J. K. 2018 Table of Static Dipole Polarizabilities of the Neutral Elements in the Periodic Table. *Mol. Phys.* 2019, 117, 1200–1225.