Supplementary Materials

First-principles analysis of photocurrent in monolayer α -selenium *p-n* junctions optoelectronic device

Yuqian Wang,¹ Xiaoyong Xiong,¹ Shibo Fang,² Hong Li,³ Zhulin Weng,¹ Dahua Ren,¹ and Qiang Li^{1*}

¹ Department of Physics, Hubei Minzu University, Enshi, 445000, P. R. China

² Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and

Design, Singapore 487372

³ College of Mechanical and Material Engineering, North China University of Technology,

Beijing 100144, P. R. China

*Corresponding Authors:liqiang@hbmzu.edu.cn

Fig. S1 Band structure of the monolayer (ML) α -selenium with (a) *p*- and (b) *n*-doping (doping concentration is 8.21×10¹⁴ cm⁻²).

Fig. S2 Band structure and density of state of the ML α -selenium with different stress (a) -2%, (b) -1%, (c) 1%, and (d) 2%.

Fig. S3 Strain-dependent photoresponsivity of the ML α -selenium *p-n* junction optoelectronic device along ARM directions under different photon energies and linearly polarized direction (a) -2%, (g) -1%, (d) 1%, and (j) 2%. Strain-dependent photoresponsivity value of the ML α -selenium *p-n* junction optoelectronic device under different photon energy as a function of linearly polarized direction along the ARM direction direction (b)(c) -2%, (h)(i) -1%, (e)(f) 1%, and (k)(l) 2%.

Fig. S4 Local device density of states (PDOS) of the ML selenium *p*-*n* junctions optoelectronic device under different gate voltage V_{g} .