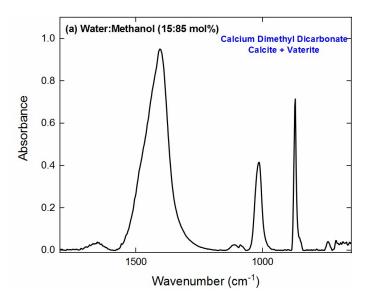
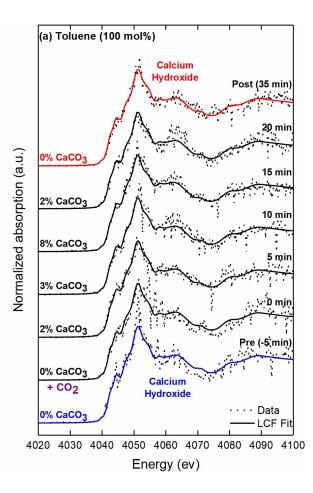
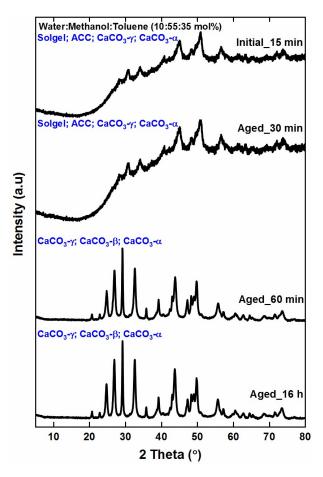
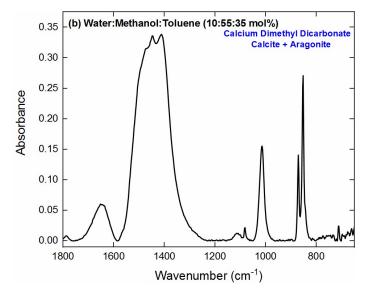

How non-aqueous media direct the reaction of Ca(OH)₂ with CO₂ to different forms of CaCO₃: operando midinfrared and X-ray absorption spectroscopy studies

Thokozile A. Kathyola,^{a,b} Sin-Yuen Chang,^b Elizabeth A. Willneff,^c Colin J. Willis,^d Giannantonio Cibin,^b Paul Wilson,^d Anna B. Kroner,^b Elizabeth J. Shotton,^b Peter J. Dowding,^d and Sven L.M. Schroeder^{*a,b}

^aSchool of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT, UK
^bDiamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
^cSchool of Design, University of Leeds, Leeds, LS2 9JT, UK
^dInfineum UK Limited, Abingdon, Oxfordshire, OX13 6BB, UK

Figure S1. Simplified schematic of the continuous-flow liquid-jet PAT experimental setup for simultaneous *operando* mid-IR and XAS measurements.^{1, 2}


Figure S2. Mid-IR of the aged post-carbonation product for the water-methanol system.

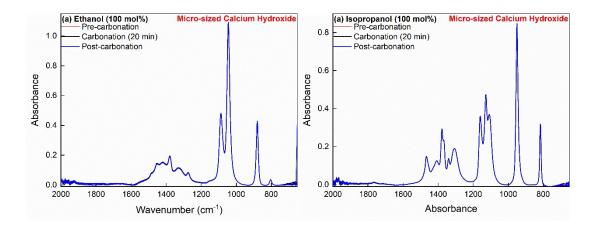

Figure S3. Time-resolved Ca K-edge XANES of the 20-minute carbonation of $Ca(OH)_2$ in pure toluene – no conversion observed.

Figure S4. Time-resolved XRD following the aging of the post-carbonation product (15 mins to 16 hours) precipitated in a ternary water-methanol-toluene (10:55:35 mol%) system.

Figure S5. Mid-IR spectrum of the aged (60 hours) post-carbonation products for the watermethanol-toluene system. shows a mixture of calcite and aragonite.

Figure S6. Mid-IR of micro-sized $Ca(OH)_2$ carbonation in pure (a) ethanol (product – no conversion) and (b) isopropanol (product – no conversion).

REFERENCES

- S. Y. Chang, T. A. Kathyola, E. A. Willneff, C. J. Willis, P. Wilson, P. J. Dowding, G. Cibin, A. B. Kroner,
 E. J. Shotton and S. L. M. Schroeder, *Reaction Chemistry & Engineering*, 2019, 4, 679-687.
- T. A. Kathyola, S.-Y. Chang, E. A. Willneff, C. J. Willis, G. Cibin, P. Wilson, A. B. Kroner, E. J. Shotton,
 P. J. Dowding and S. L. M. Schroeder, *Industrial & Engineering Chemistry Research*, 2023, 62, 16198-16206.