Supporting Information: Effect of architectural asymmetry of hyperbranched block copolymers on their phase boundaries

Jiahao Shi, Qingshu Dong,
* and Weihua Li^*

State Key Laboratory of Molecular Engineering of Polymers, Research Center of AI for Polymer Science, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China

E-mail: qsdong@fudan.edu.cn; weihuali@fudan.edu.cn

The phase diagram of AB_4 is shown in Figure 3(a), and the parameters set up for specific structures in Figure 2 are as follows:

Figure S1: Isosurface plots of the FCC phases from AB₄ with $\chi N=40, f=0.180.$

Figure S2: Isosurface plots of the BCC phases from AB₄ with $\chi N = 40, f = 0.185$.

Figure S3: Isosurface plots of the σ phases from AB₄ with $\chi N=40, f=0.240.$

Figure S4: Isosurface plots of the A15 phases from AB₄ with $\chi N=40, f=0.320.$

Figure S5: Isosurface plots of the C₆ phases from AB₄ with $\chi N=40, f=0.400.$

Figure S6: Isosurface plots of the O⁷⁰ phases from AB₄ with $\chi N = 15, f = 0.540$.

Figure S7: Isosurface plots of the G phases from AB₄ with $\chi N=40, f=0.520.$

Figure S8: Isosurface plots of the L phases from AB₄ with $\chi N=15, f=0.560.$